Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Моделирование гидродинамики реактора

    Моделирование гидродинамики реакторов коксования - задача непростая, так как необходимо имитировать фазовый переход. Твердая фаза при этом должна быть обратимой для опорожнения аппарата, в противном случае эксперимент неоправданно усложняется. Излишнее упрощение, например, в случае системы вода - воздух [76] и моделирование только по критерию Фруда не позволяет получить сколь-нибудь ценные для практики сведения. [c.128]


    Пример 2.4, Моделирование гидродинамики реактора. [c.20]

    В книге рассмотрены вопросы расчета химических ре-акц/1Й, протекающих в типичных для процессов химической технологии реакторах. Изложены основы кинетики гомогенных н гетерогенных процессов, приведены рекомендации по составлению материального и энергетического балансов реакторов, освещены вопросы их гидродинамики. Рассмотрена термодинамика химических реакций. Даны примеры расчетов и задачи для самостоятельного решения. Книга дополнена обзорной статьей о современных направлениях работ в области моделирования химических реакторов и исчерпывающей библиографией. [c.4]

    Болотова Н. В., Рудаков А. И. Моделирование гидродинамики осесимметричного реактора с неподвижным слоем катализатора,—В кн. Математические методы в химии. Материалы 3-й Всесоюзной конференции. [c.154]

    При конструктивном решении контактных аппаратов для обеспечения равномерного прохождения газов и т. д. необходимо применять гидродинамическое моделирование, а для определения тепловых и диффузионных характеристик — тепловое моделирование. Это означает, что моделирование химических реакторов не сводится только к анализу математического описания. Методы физического моделирования дополняют математические при решении вопросов гидродинамики, теплопередачи и диффузии. Таким образом, полное моделирование химических реакторов должно сочетать в себе методы математического и физического моделирования. [c.15]

    МОДЕЛИРОВАНИЕ КИНЕТИКИ БИОХИМИЧЕСКОЙ РЕАКЦИИ, МОДЕЛИРОВАНИЕ РАБОТЫ РЕАКТОРОВ БИОСИНТЕЗА С РАЗЛИЧНОЙ ГИДРОДИНАМИКОЙ -ПРОТОЧНЫЕ РЕАКТОРЫ ИДЕАЛЬНОГО СМЕШЕНИЯ И ВЫТЕСНЕНИЯ, КАСКАД РЕАКТОРОВ ИДЕАЛЬНОГО СМЕШЕНИЯ, РЕАКТОР ПЕРИОДИЧЕСКОГО ДЕЙСТВИЯ, ВЫБОР ОПТИМАЛЬНОЙ ТЕХНОЛОГИЧЕСКОЙ СХЕМЫ ПРОЦЕССА) [c.64]

    При моделировании процесса ферментации в ферментере идеального смешения периодического действия (рис. 6.3, б) можно воспользоваться системой уравнений (6.1), так как в данной ситуации гидродинамика реактора не оказывает влияния на результаты физико-химического процесса. [c.67]

    Таким образом, рециркуляция может дать и положительный, и отрицательный экономический эффект. Наличие двух противоположных качеств рециркуляции при практическом осуществлении рециркуляционного химического процесса вызывает необходимость компромиссного решения вопроса о количестве и составе посылаемого иа повторную переработку материального потока, о тех значениях глубины превращения и связанного с ней коэффициента рециркуляции, которые удовлетворяли бы достижению поставленной цели. Решение этой задачи предполагает математическое моделирование процесса с учетом параметров обратной связи и его оптимизацию. Благодаря появлению и развитию различных математических методов оптимизации и применению их в химической технологии задача эта стала разрешимой с помощью ЭВМ уже в 1960-е годы. В этой связи в последние 10—15 лет зарождаются и получают бурное развитие исследования по оптимизации в соответствии с экономическим критерием [57, 58]. Необходимым условием отыскания оптимального варианта является наличие математической модели процесса, представляющей собой систему уравнений кинетики, выражений для скоростей передачи теплоты, уравнений гидродинамики и экономического критерия оптимальности, удовлетворяющего определенным ограничениям. В случае оптимизации рециркуляционного химического реактора его математическая модель включает и уравнения обратной связи. [c.271]


    Пример 1Х-5. Моделирование процесса разложения в трубчатом реакторе. Для того чтобы использовать методы математического моделирования для оптимального проектирования химико-технологических установок или нахождения оптимальных режимов проведения процессов, необходимо располагать уравнениями, описывающими гидродинамику, тепло- и массопередачу и кинетику химических реакций, протекающих в изучаемой физической системе. [c.196]

    Впервые моделирование как метод научного познания был использован в аэро- и гидродинамике. Была развита теория подобия, позволяющая переносить результаты экспериментов, получаемых на установках небольшого масштаба (моделях), на реальные объекты большого масштаба. Основой таких исследований является физическое моделирование, при котором природа модели и исследуемого объекта одна и та же. Физическое моделирование и теория подобия нашли широкое применение в химической технологии при исследовании тепловых и диффузионных процессов. Были сделаны попытки использовать теорию подобия и для химических процессов и реакторов. Однако ее применение здесь оказалось весьма ограниченным из-за несовместимости условий подобия для химических и физических составляющих процесса в реакторах разного масштаба. Например, степень превращения реагентов зависит от времени пребывания их в реакторе, равного отношению размера к скорости потока. Условия тепло- и массопереноса, как следует из теории подобия, зависит от критерия Рейнольдса, пропорционального произведению размера на скорость. Сделать одинаковыми в аппаратах разного масштаба и отношение, и произведение двух величин невозможно. Вклад химических и физических составляющих реакционного процесса и их взаимовлияние и, следовательно, влияние их на результаты процесса в целом зависят от масштаба. В аппарате небольшого размера выделяющаяся теплота легко теряется и слабо влияет на скорость превращения. В аппарате большого размера выделяющаяся теплота легче запирается в реакторе, существенно влияет на поле температур и, следовательно, на скорость и результаты протекания ре- [c.30]

    Оценке прочности оборудования АЭС предшествует в этом случае анализ теплогидравлических процессов во времени, сопровождающих указанные режимы, с тем, чтобы получить историю силового и температурного нагружения трубопроводов, корпусов реактора, парогенераторов, их внутри-корпусных устройств и опорных конструкций. Поскольку подробное рассмотрение этих процессов и методов их моделирования выходит за рамки данной книги, приведем лишь основные уравнения теплообмена и гидродинамики теплоносителя, которые будут привлечены в дальнейшем для анализа температурных полей и гидродинамических воздействий в переходных режимах. [c.90]

    Электрические вычислительные машины позволяют быстро производить необходимые расчеты и обеспечивают плодотворное применение математического моделирования. При этом под моделью понимают математическое описание исследуемого процесса. Оно может состоять из одного или нескольких уравнений в зависимости от сложности процесса. Гидродинамика, теплообмен, массообмен и химическая кинетика, обусловливающая работу реактора, должны быть, каждый в отдельности, описаны своим уравнением. Совокупность всех этих уравнений дает полное математическое описание. Естественно, что в основу этой работы будут заложены наши представления о модели самого аппарата и режиме его работы. [c.199]

    Большое значение как при периодической, так и непрерывной организации процесса, имеет характер движения потоков — прямоток, противоток или перекрестный ток. Структура потоков в аппарате (полное вытеснение, полное перемешивание или их комбинация) определяет выбор математической модели процесса, включающей уравнения, описывающие статику и динамику, а также граничные и начальные условия и другие характеристики процесса. Составление математической модели в каждом частном случае ведется в соответствии с системным подходом к процессу процесс разбивают на элементарные стадии, расположенные в иерархическом порядке. На первом уровне математической модели обычно располагают зависимости, описывающие условия равновесия, а также характер химических превращений (если они имеют место). На втором иерархическом уровне описываются закономерности элементарных процессов переноса, идущих в единичном зерне, в одной капле, пузыре и т. п. Третий уровень соответствует моделированию процесса в целом слое, на тарелке и т. д., включая в себя зависимости второго уровня. На четвертом уровне принимается во внимание расположение отдельных слоев, тарелок, теплообменных устройств в целом аппарате (с учетом фактора масштабирования). Пятый уровень включает описание гидродинамики и массообмена в каскаде реакторов или агрегате. [c.74]

    В теории моделирования принято классифицировать химические реакторы на периодические и непрерывные (по характеру изменения концентраций реагентов во времени). Каждый из этих типов можно свести в свою очередь к двум идеализированным с точки зрения гидродинамики моделям реактор полного смешения и реактор, в котором смешение реагентов отсутствует. При анализе непрерывных реакторов рассматривают также различные комбинации реакторов смешения и вытеснения, а кроме этого, каскады (цепочки) проточных реакторов различного типа. Ниже дается краткая характеристика основных моделей. [c.341]


    Константы элементарных стадий были выбраны по литературным сведениям как аррениусовские функции температуры эффективность инициирования / была принята равной 0,6 влияние растворителя на константу обрыва было учтено введением корректирующего фактора Фр, найденного эмпирически из условия минимизации отклонения экспериментальных и расчетных данных. Точно также для корректирования модели при высокой вязкости среды Т1 оказалось необходимым ввести эмпирические соотношения типа вязкость — конверсия и константа обрыва — вязкость. В работе приводятся обширные экспериментальные сведения по корректированию и проверке модели в широком диапазоне изменений условий полимеризации. При переходе к непрерывному процессу экспериментально обоснована модель идеального смешения на модельных жидкостях в широком диапазоне вязкостей (обратим еще раз внимание на то, что при этом не может быть различена степень сегрегации) в опытном реакторе. При переходе к промышленному реактору гидродинамика его была представлена комбинированной моделью из трех объемов идеального смешения, вытеснения и застойного. Соотношения объемов подобраны экспериментально из условий совпадения степени конверсии, вычисленной теоретически и измеренной экспериментально. Подробно исследован каскад реакторов и различные способы его реализации (число ступеней, влияние рецикла на ММР) [124]. Таким образом, в анализируемом цикле исследований дано подробное моделирование процесса полимеризации на кинетическом и гидродинамическом уровнях применительно к промышленному процессу. Собственно математическая модель приводится только для кинетического уровня при периодическом процессе, а экспериментальные данные и сопоставление с моделями — как для периодического, так и для непрерывного процесса в установившемся состоянии. [c.242]

    Математическое моделирование процесса на основе гидродинамики, кинетической информации, использования теплофизических констант позволяет провести расчеты оптимальных вариантов синтеза, сопоставить различные условия проведения процесса, конфигурации реакторов и т. п. [c.131]

    Отсутствие однотипности в качественном и количественном составах полученных уравнений математического описания подтвердило правильность предположений о существенном влиянии конструкционных особенностей реакторов димеризации ацетилена на гидродинамику процесса и необходимость его моделирования по каждому реактору в отдельности. [c.95]

    Метод математического моделирования заключается в том, что явления, протекающие в заданном объекте, и их взаимосвязь количественно описываются системой математических уравнений, которая и представляет собою математическую модель объекта. Для каталитических реакторов математическая модель в общем случае должна включать в себя всю систему уравнений кинетики, макрокинетики, гидродинамики и теплообмена, которым посвящены главы I —П1 и VI. Численные значения коэффициентов модели могут меняться при изменении масштаба реактора, но структура модели остается неизменной. Значения коэффициентов модели, таких, как кинетические константы, коэффициенты диффузии и тепло- и массопереноса могут определяться как экспериментальным путем при лабораторных или стендовых исследованиях, так и расчетно-теоретическим путем. При наличии модели и известных значениях коэффициентов с применением ЭВМ могут быть исследованы различные варианты реактора для заданного процесса и проведена его оптимизация. [c.260]

    Кириллов Б. А., Матрос Ю. Ш., Слинько М. Г. Исследование гидродинамики потока в слое н( пористых частиц. — В кн. . Моделирование химических реакторов, Новосибирск — Киев ИКСОЛНСССР, 1970, ч. И, с. 160—174. [c.340]

    Постановка снециальных экснернментальных исследований и математическое моделирование иа основе совремеппых ЭВМ тепловых и концентрационных полей в реакторе с учетом описания гидродинамики в дисперсных системах позволяют определить влияние неоднородностей на качество работы аппарата, установить требования, ограничивающие допустимые отклонения от однородных условий. [c.3]

    Создание единой для большого числа процессов и аппаратов математической модели, отражающей физическую сущность явления, невозможно без выявления истинных закономерностей осуществляемых физико-химических превращений. Вместо подгонки диффузионных моделей с эффективными, т. е. дающими похожий на конечный результат ответ, коэффициентами под единичные эксперименты, надо направить усилия на изучение определяющих этот комплексный ответ отдельных факторов, таких как структура слоя катализатора, глобальная и локальная гидродинамика смеси, тепло- и массоперенос, кинетика гетерогенных химических реакций. Основу этого изучения по каждому из указанных разделов должно составлять целенаправленное экспериментальное обследование во всем интересном для практических приложений диапазоне изменения определяющих параметров с последующей фиксацией физических закономерностей или критериев нодобпя исследуемого яв.пения. На первом этапе изучения отдельных влияющих па работу химических реакторов факторов, кроме изучения кинетики химических реакций, остается реальной идея физического, в том числе и масштабного, моделирования с применением вычислительной техники, при этом должно быть обеспечено соответствие теоретических моделей экспериментальным данным. На втором этапе описания работы химических реакторов общая математическая модель будет получена сложением отдельных составляющих процесса. Основным будет выбор частных видов общей модели, отвечающих конкретным практическим случаям, и их численный расчет с учетом всех влияющих факторов. [c.53]

    Конструирование же реакторного узла для процесса гид-рогенолиза углеводов не является тривиальной задачей из-за сложности механизма реакции, недостаточной изученности ее кинетики, трудностей моделирования реакторов и сложной гидродинамики процесса. [c.138]

    Разработать алгоритм, блок-схему и программу расчета изотермического проточного реактора с гидродинамикой, описываемой ячеечной моделью (РЯМ) с числом ячеек взяв за основу расчета моделирование процесса в изотермическом реакторе идеального смешения периодического действия (РИСПД), в котором гидродинамика не оказывает влияния на кинетику химического процесса. Масштабный переход к модели РЯМ по данным расчета РИСПД выполняется по формуле [c.43]

    Для математического моделирования реакторно-регенераторного блока каталитического пиролиза необходимы математические описания процесса каталитического пиролиза, протекающего в лифт-реакторе, и окислительной регенерации катализатора в кипящем слое. В литературе приводятся различные математические модели каталитического пиролиза в движущемся слое катализатора, в кипящем слое и др. Все они требуют составления большого количества алгебраических, дифференхщальных, интегральных и интегрально - дифференциальных уравнений тепломассообмена, гидродинамики, а также уравнений, учитывающих изменение по объему реактора массы сырья и его температуры Трудоемкость решения систем данных уравнений вынуждает авторов делать упрощения и допущения. Также следует иметь в виду, что иногда из-за ограниченности экспериментальных данных сложно определить значения некоторых коэффициентов. Все это вынуждает исследователей к поиску новых подходов при моделировании каталитического пиролиза. Во многих литературных публикациях, касающихся составления кинетических моделей, отмечается, что при рассмотрении многокомпонентных систем, для обработки экспериментальных данных предлагается использовать вероятностно-статистические методы, в том числе и для процесса пиролиза. Обзор данных публикаций представлен в работе [1]. [c.120]

    Исследования проводились на лабораторной модельной установке по изучени о гидродинамики.В ходе испытаний были выполнены основные требования по моделированию,так же производился замер температур на поверхности модельного реактора.Для возможности оценки полученных результатов были проведены исследования при стандартном цикле заполнения,Анализ результатов распределения температур и расположения каналов при стандартном цикле идентичен данным полученным на промншленнь х установках замедленного коксования, с применением равномерного распределения температуртое поле стало более стабильным,исчезли застойные зоны,и каналы равномерно распределились по сечения и высоте реактора коксования. ЛИТЕРАТУРА [c.33]

    При моделировании проточных химических реакторов с неподвижным мелкозернистым слоем катализатора, при моделировании прошшшенных сорбционных установок и в других задачах, связанных с движением газов в пористой среде, часто необходимо учитывать неизатермичность процессов. Изменение температуры среды влияет не только на сорбционные и кинетические свойства сорбентов (катализаторов), но и на гидродинамику потока. В связи с этшл представляет штерес постановка и решение задачи [c.88]

    Ку 3 и чк и н Н. В., Мухл е н ов И. П., Бартов А. Т. Гидродинамика взвешенного слоя с упорядоченной насадкой. Пятая Всесоюзная конференция по моделированию химических и нефтехимических, нефтеперерабатывающих процессов и реакторов. Химре-актор-5 . Тезисы докладов, т. 2. Уфа, 1974. [c.195]

    ММР влияет на качество получающегося полимера, его физико-механические показатели. С другой стороны, ММР удобно связать с кинетикой протекания процесса полимеризации, с макроки-нетическими закономерностями реакторов (о влиянии гидродинамики уже упоминалось). Таким образом, поскольку ММР несет большой объем информации о механизме протекания процесса полимеризации и позволяет прогнозировать качество полимера в широкой области изменения его параметров, а также учитывая большой прогресс в области измерения ММР, достигнутый за последнее время, следует считать задачу построения моделей на уровне ММР основной при моделировании полимеризационных процессов. [c.12]

    Влияние диффузионного характера реакции (обусловленного в. первую очередь гетерофазностью процесса) можно учитывать на различных уровнях моделирования либо на микрокинетическом (рассматривая совокупность областей — чисто кинетической и диффузионной), либо — для непрерывных процессов — на макрокинетическом (например, при переходе к уравнениям гидродинамики можно пользоваться либо диффузионными моделями вытеснения либо сегрегационными моделями — для реакторов идеального перемешивания). Так, для полимеризации в суспензии и в массе разумно предположить наличие полной сегрегации, что выразится в выборе соответствующих уравнений для реактора идеального перемешивания. Для гомогенной полимеризации в растворе в гидродинамических моделях непрерывных процессов разумно предположить идеальное смешение на микроуровне. Многие реальные полимеризационные процессы (суспензионные с коалесценцией, эмульсионные, в концентрированных растворах при полимеризации до глубоких конверсий) занимают промежуточное положение, между указанными двумя крайними случаями смешения. [c.67]

    Физическое и математическое моделирование колонных аппаратов является до настоящего времени задачей трудноразрешимой. Двухфазная система с трудномоделируемыми фазовыми переходами, струйное впрыскивание в сочетании с системой газовой циркуляции, создающие весьма сложную гидродинамику потоков,—эти обстоятельства позволяют говорить лишь о сугубо качественных расчетах аппаратов колонного типа. Однако большой опыт, накопленный при проектировании и промышленной эксплуатации таких реакторов, позволял получать работоспособные реакционные узлы для установок оксосинтеза в тот период, когда методы математического моделирования химической технологии только зарождались. Этими обстоятельствами и объясняется относительная распространенность использования реакторов колонного типа с внутренним теплосъемом в оксопроцессе. [c.96]


Смотреть страницы где упоминается термин Моделирование гидродинамики реактора: [c.84]    [c.455]    [c.2]    [c.267]    [c.35]    [c.5]    [c.132]    [c.8]   
Введение в моделирование химико технологических процессов Издание 2 (1982) -- [ c.20 ]




ПОИСК





Смотрите так же термины и статьи:

Гидродинамика



© 2025 chem21.info Реклама на сайте