Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ядерные излучения характеристика

    Носители заряда в полупроводниках и диэлектриках возникают за счет возбуждения связанных электронов. Отсюда следует, что их концентрация может резко изменяться под действием температуры, света, ядерных излучений, а также за счет введения примесных атомов, способствующих уменьшению энергии возбуждения. Так, при температурах, близких к абсолютному нулю, концентрация носителей в этих веществах практически равна нулю, а при высоких температурах становится близкой к концентрации носителей в металлах. Следовательно, повышение температуры способствует возбуждению связанных электронов и наоборот, понижение температуры вызывает связывание электронов, т. е. исчезновение носителей заряда. Процессы возбуждения (генерации) и исчезновения (рекомбинации) носителей заряда происходят не моментально, а с некоторой конечной скоростью, величина которой определяет целый ряд основных свойств полупроводников и является одной из важнейших характеристик материала. [c.11]


    Для регистрации ядерного излучения необходимо найти оптимальное напряжение на счетчике — рабочее напряжение. Для этого производится определение рабочей характеристики счетчика Гейгера — Мюллера. Рабочая характеристика счетчика лежит в области Гейгера. В этой области каждая частица, попавшая внутрь счетчика, вызывает в нем коронный разряд и регистрируется. Следовательно, в области Гейгера регистрируемая счетчиком скорость счета данного радиоактивного препарата не зависит от напряжения. На рис. 39 изображена счетная характеристика [c.49]

    На рис. 46 изображен метод отыскания оптимального значения напряжения дискриминации (запирания). Следует подчеркнуть, что оптимальные параметры сцинтилляционного счетчика меняются в зависимости от типа и энергии ядерного излучения. Счетная характеристика сцинтилляционного счетчика обычно не имеет плато (рис. 45) и поэтому требуется очень хорошая стабилизация высокого напряжения, подающегося на ФЭУ, и напряжения питания линейного усилителя. [c.58]

    Тип радиоактивного превращения, энергия образующихся в результате распада ядерных частиц и период полураспада полностью характеризуют данный радиоактивный изотоп. Совпадение экспериментально полученных данных с величинами, имеющимися в литературе, а также химическая идентификация гарантируют радиохимическую чистоту используемого изотопа. Очень часто невозможно определить все физические характеристики изотопа, тогда ограничиваются измерением или периода полураспада, или энергии ядерных частиц. В соответствующих таблицах изотопов можно найти достоверные значения Т1/2 и характеристики ядерного излучения. [c.85]

    Вид счетной характеристики сцинтилляционного счетчика зависит от материала и размера сцинтиллятора, а также от типа регистрируемого излучения. Рассмотрим более подробно факторы, определяющие вид счетных характеристик при регистрации ядерных излучений различных типов. При этом будем учитывать, что, как было показано, амплитуды импульсов в сцинтилляционном детекторе пропорциональны энергетическим потерям излучения в сцинтилляторе. Вызвать срабатывание электронного регистрирующего устройства способны только те импульсы, величина которых превышает некоторое пороговое значение Упор- [c.98]

    Следует подчеркнуть, что оптимальный режим работы сцинтилляционных счетчиков меняется в зависимости от типа и энергии ядерного излучения. Если счетная характеристика не имеет плато, то для получения воспроизводимых данных требуется хорошая стабилизация высокого напряжения, подаваемого на ФЭУ. [c.100]


    Наряду с постоянными радиоактивного распада каждый радиоэлемент можно охарактеризовать по тем ядерным излучениям, которые он испускает. Если данный радиоэлемент является, а-излучателем, то для его однозначной характеристики, т. е. для качественного его определения в присутствии других радиоэлементов, достаточно точно определить длину пробега Я его а-частиц в воздухе при определенной температуре и давлении воздуха. Для полной, однозначной характеристики р-излучателя необходимо знать распределение испускаемых радиоэлементом р-частиц по энергиям эти же соображения относятся и к радиоэлементам, испускающим у-излучение. [c.34]

    Характеристика ядерных излучений. Рассмотрим кратко характерные особенности ядерных излучений, возникающих в процессе радиоактивного распада. [c.17]

    В понятие регистрация ядерных излучений входит не только процесс качественного обнаружения излучения, но и количественное определение некоторых его характеристик (интенсивности, энергии и т. п.). Обычно прибор для регистрации излучения состоит из двух основных частей детектора и измерительной аппаратуры. Детектор—чувствительный элемент прибора, в котором происходит взаимодействие излучения с веп],еством для регистрации излучения используют то или иное явление (см. ниже), сопровождающее акты взаимодействия. Измерительная аппаратура состоит из электрической схемы, которая преобразует сигнал, получаемый от детектора, в форму, удобную для регистрации, и элементов, позволяющих производить непосредственные измерения. Разумеется, измерительная аппаратура указанного назначения применяется в сочетании только с теми детекторами, которые реагируют на воздействие излучений изменением своих электрических характеристик. [c.43]

    Характеристики счетчиков. Зависимость скорости счета импульсов от приложенного напряжения при постоянной интенсивности падающего на газоразрядный счетчик ядерного излучения [c.59]

    Токовая характеристика газоразрядного счетчика (рис. 2и) представляет собой зависимость среднего тока, протекающего через счетчик, от интенсивности падающего на него ядерного излучения. Очевидно, рабочим участком является линейный участок характеристики аб в пределах этого участка средний ток через счетчик прямо пропорционален интенсивности излу-чения. [c.60]

    Характеристика различных видов ядерных излучений и общие закономерности их прохождения через вещество. ... Единицы измерения энергии и интенсивности излучений. .  [c.3]

    ХАРАКТЕРИСТИКА РАЗЛИЧНЫХ ВИДОВ ЯДЕРНЫХ ИЗЛУЧЕНИЙ И ОБЩИЕ ЗАКОНОМЕРНОСТИ ИХ ПРОХОЖДЕНИЯ ЧЕРЕЗ ВЕЩЕСТВО [c.9]

    Характеристика ядерных излучений и их прохождение через вещество 11 [c.11]

    Книга состоит из пятнадцати глав. Одиннадцать из них посвяш,ены основным характеристикам атомных ядер, радиоактивному распаду, ядер-ным реакциям, взаимодействию ядерных излучений с веществом, получению ядерной энергии и представляют собой как бы учебник ядерной физики для химиков. Эти главы написаны достаточно просто, без математических выкладок и в то же время на хорошем и вполне современном теоретическом уровне. В качестве примера следует указать на гл. IX Ядер-ные модели , в которой четко и наглядно характеризуются основные положения оболочечной и обобщенной моделей и роль парных корреляций нуклонов, и гл. X Ядерные реакции , содержащую сжатое, но вполне ясное изложение представлений об оптической модели, о механизме реакций, идущих через образование компаунд-ядра и путем прямых ядерных взаимодействий. [c.5]

    Когда материалы подвергаются воздействию ядерного излучения, необходимо учитывать, будет облучение оказывать благоприятный или вредный эффект следует иметь в виду, что умеренное облучение может улучшать характеристики металла. [c.76]

    Таким образом, даже ископаемые ресурсы одного и того же вида по своей качественной характеристике существенно различаются между собой. Тем более сложно сопоставлять ресурсы невозобновляемых топлив и ядерной энергии с возобновляемыми источниками энергии. При этом если ядерное топливо характеризуется высокой степенью концентрации энергии (при делении 1 г урана выделяется 82 ГДж тепловой энергии), то возобновляемые источники энергии характеризуются низкой плотностью и рассредоточенностью энергетического потока. Так, средняя интенсивность солнечного излучения на поверхности Земли оценивается в 160 Вт/м , а средняя плотность энергии, которая может быть получена за счет использования лесного покрова Земли, составляет 0,2 Вт/м [7, 8]. [c.13]

    Электронное возбуждение, ионизация, образование радикалов, окисление и сшивка также являются основными процессами, происходящими в твердых полимерах под действием ядерного облучения (а, р,у-излучение, нуклоны). С учетом влияния подвижности молекул на кинетику деградации и сшивку материала усиливающее действие напряжения возможно, но это еще нельзя считать доказанным. Перед современными исследователями стоит задача понять взаимосвязь между характеристиками облучения (зависимость дозы облучения и скорости дозирования), структурой сетки и макроскопическими свойствами материала после его облучения [198, 200,219]. [c.322]


    Более высокое качество каучуков этого типа обнаруживается и в стойкости к гамма-излучению. Натуральный каучук считают достаточно стойким к радиоактивным излучениям, но аддукт-каучук значительно более стоек в интервале температур от —85 до -Ь93° С в верхней части этого интервала натуральный каучук разрушается быстрее. Синтетическая ткань с покрытием иа аддукт-каучука предложена в качестве конструкционного материала для самолетов с ядерным двигателем [39]. Этот новый материал не разрушается при суммарной дозировке радиоактивного излучения 10 р, а по характеристикам старения и диффузионным свойствам равноценен другим современным покрытиям тканей, применяемым в самолетостроении. [c.213]

    Вещество и излучение являются двумя формами существования материи, и между их основными характеристиками—массой и энергией— имеется важная взаимосвязь. Эта взаимосвязь иногда называется соотношением эквивалентности между массой и энергией, и хотя с ним никогда не приходится сталкиваться при изучении механических или химических явлений, оно играет важную роль в ядерных превращениях. Соотношение эквивалентности между массой и энергией установлено Эйнштейном и описывается уравнением, названным его именем  [c.33]

    Выгодные ядерные характеристики радионуклидов натрия (табл. 47), 100%-ное содержание Ка в природной смеси, достаточно высокое сечение активации для медленных нейтронов обусловливают высокую чувствительность активационного определения натрия даже при малых временах облучения. Следует, однако, иметь в виду, что при использовании ядерной реакции (п, у) немедленной регистрации 2 Ка по 7-пикам с энергией 1,368 и 2,754 МэВ мешают соответственно с периодом полураспада 1,827 ч и энергией -излучения [c.138]

    Ускорители заряженных частиц. Для получения нейтронов используют ядерные реакции под действием заряженных частиц (обычно дейтронов, протонов и а-частиц), а также фотонейтронные реакции под действием тормозного (рентгеновского) излучения. Эффективное сечение таких реакций зависит от энергии указанных частиц и электростатического барьера ядра-мишени. Энергетический спектр возникающих нейтронов и их угловое распределение определяются видом и энергией частиц, а также характеристиками облучаемых ядер и толщиной мишени (рис. 34). [c.53]

    Чтобы получить их, образцы плутония бомбардировали нейтронами и дейтронами, а затем, исследуя облученные мишени, пытались обнаружить характерное для нового элемента альфа-излучение. Новые элементы могли и должны были образоваться и при непосредственном взаимодействии ядер плутония с бомбардирующим дейтроном (заряд увеличивается па единицу), и при бета-распаде перегруженных нейтронами новых изотопов. Серия последовательных бета-превращений могла сдвинуть вправо номер элемента на несколько единиц. Таким образом, бомбардируя плутоний нейтронами, физики уповали на бета-распад как на средство достижения цели. А на альфа-распад — как на своего рода индикатор, ибо для надежной ядерно-физической идентификации нового изотопа нужно знать пе только период полураспада его атомных ядер, но и энергию испускаемых альфа-частиц. Для радиоактивного изотопа это почти такая же индивидуальная характеристика, как для элемента линии рентгеновского спектра, [c.406]

    По сравнению с естественными источниками гамма-излучения (препараты естественно-радиоактивных элементов) в настоящее время значительно большей мощностью и большей доступностью обладают искусственные источники, т. е. различные радиоактивные изотопы. Среди последних наибольшее распространение получил изотоп кобальта Со , образующийся в ядерном реакторе из обычного кобальта Со за счет захвата ядрами медленных нейтронов. Кобальт-60 испускает гамма-лучи с энергией 1,3 мэв и имеет период полураспада 5,25 года. Для характеристики мощности кобальтовых источников гамма-излучения укажем, что если активность естественного источника, представляющего собою 1 г чистого [c.459]

    Химическая поляризация ядер (ХПЯ) — это явление неравновесной ориентации ядер в продуктах химических реакций. Оно проявляется в спектрах ядерного магнитного резонанса молекул, образующихся в ходе реакции, как аномально сильное поглощение или излучение. Первый случай соответствует положительной поляризации ядер, второй — отрицательной. Разработаны физические механизмы ориентации ядер и теория ХПЯ, а также применение этого явления для установления механизмов химических реакций. ХПЯ — новый метод детектирования радикалов и радикальных стадий, превосходящий по чувствительности метод электронного парамагнитного резонанса он позволяет устанавливать происхождение радикалов и молекул, идентифицировать элементарные стадии их образования, оценивать конкуренцию радикального и нерадикального путей реакции, определять времена жизни радикалов и их магнитные характеристики. [c.8]

    Возможные при распаде радионуклида ядерные переходы, характеристики основных и возбужденных состояний, характеристики испускаемых ионизирующих излучений и их интенсивности обычно представляют в виде диаграммы, называемой схемой распада. Численные данные, характеризующие ядерные состояния, распад радионуклида и энергетическую разрядку ядра-продукта, называют соответственно схемными данными. Не все схемные данные нужны при работе с радиофар-мацевтическими препаратами, а лишь часть из них, которые ниже называются основными. К ним относятся период полураспада, вид, энергетическая характеристика и интенсивность всех компонентов ионизирующего излучения, возникающего как при распаде радионуклида, так и при энергетической разрядке ядра-продукта. Кроме того, для ядерной медицины важ- [c.58]

    Указанные основные ядерно-физические характеристики и характеристики сопровождающего распад рентгеновского излучения для радионуклидов, входящих в РФП, а также используемых в составе образцовых радиоактивных растворов и источников, применяемых для аттестации РФП, приведены в прилагаемой Таблице физических характеристик некоторых радионуклидов . При этом бета-излучение характеризуется граничной энергией, средней энергией и интенсизностью, моно-энергетические излучения — энергией и интенсивностью отдельных линий. Интенсивность каждого компонента излучения выражена числом частиц или фотонов, приходящихся на 100 актов распада. [c.59]

    Плотность и объемная масса. Плотность портландцемента в за-вцсимости от его состава составляет 3000—3200 кг/м . Другой технической характеристикой цемента служит его насыпная объемная масса, которая в рыхлом состоянии колеблется от 900 до 1000 кг/м , в уплотненном — от 1400 до 1700 кг/м . В практике часто пользуются для расчета объема хранилищ средней цифрой— 1200 кг/м . Цементы с пониженной плотностью при прочих равных условиях более экономичны. Цементы с повышенной плотностью применяются для тампонирования нефтяных скважин, для сооружения защитных устройств от ядерных излучений. Повышения плотности добиваются увеличением железистых составляющих ( 4AF, СгР), а также введением окиси бария. Пониженной плотностью обладают шлаковый и пуццолановый портландцементы. [c.380]

    При изучении химии радиоактивных веществ объектом исследования является тот или иной радиоактивный элемент. В отношении же ядерных характеристик и свойств ядерного излучения определенной индивидуальностью обладают сорта атомов с одинаковыми атомными ядрами. Их принято называть нуклидами. Химический элемент объединяет все нуклиды с одинаковым зарядом ядра 2, и эти нуклиды явля- [c.518]

    ИСТОЧНИКИ ЯДЕРНЫХ ИЗЛУЧЕНИЙ — устройства, к-рыо могут быть использованы для облучения различных объектов -лучами, ускоренными электронами, Р-частицами, нейтронами, протонами и более тяжелыми частицами. И. я. и. применяются с целые воздействия на физико-химич. или биологич. свойства объектов, а также на протекающие в этих объектах нроцессы. Потоки частиц и у-кваптов могут быть получены от изотопных источников, от ускорителей частиц и ядерных реакторов. Природа излучения, его энергия и интенсивность являются основными характеристиками И. я. и., т. к. ими определяются важнейшие условия процесса облучения доза, мощность дозы, глубина и равномерность облучения. Сущест-иетшми являются также форма и габариты облучателя. [c.168]

    Высокая термо- и химическая стойкость различных окислов предопределяет возможность их применения в качестве диэлектриков термоэлектродных проводов при воздействии интенсивных потоков ядерных излучений. В связи с этим необходимо учитывать некоторые ядерные характеристики таких материалов, так как энерговыделепие в них будет зависеть от поглощенной дозы излучения того или иного вида кроме того, введение материала, сильно поглощающего нейтро ны, в активную зону реактора может существенно изменить его радио активность и в значительной степени повлиять на режим его работы. С этой точки зрения наиболее пригодны для работы в активной зоне атомного реактора окиси бериллия и магния, так как они слабо погло щают нейтроны и незначительно влияют на режим работы реактора. [c.17]

    Очень большое значение приобрели за последние десятилетия спектры ядерного магнитного резонанса (ЯМР). Не вдаваясь в подробности, отметим, что в этом случае измеряется поглош,ение электромагнит-пых излучений очень высоких частот (т. е. длинных волн). ЯМР имеет дело с частотами 0,1—0,01 см" , т. е. с областью сантиметровых радиоволн. В связи с этим метод ЯМР называют также радиоспектроскопией. Наиболее часто этот метод применяется в форме протонного магнитного резонанса (ПМР) он 1Юзволяет получить точную характеристику атомов водорода, имеющихся в исследуемой молекуле. [c.360]

    Сегодня квантовая химия позволяет с высокой точностью вычислять равновесные межъядерные расстояния и валентные углы, барьеры внутреннего вращения, энергии образования и энергии диссоциации, частоты и вероятности переходов под влиянием электромагнитного излучения в весьма широком диапазоне длин волн (от рентгеноэлектронных спектров до спектров ЯМР), энергии активации, сечения и константы скорости простейших химических реакций. В ходе квантовохимических расчетов для многих молекул было обнаружено, с одной стороны, существование значительного числа минимумов на потенциальных поверхностях, разделенных часто невысокими барьерами (нежесткие молекулы), была установлена высокая чувствительность электронного распределения к изменениям ядерной конфигурации, а с другой стороны, были подтверждены и постулируемые классической теорией возможности переноса локальных характеристик отдельных фрагментов молекул в рядах родственных соединений и т.п. Квантовая химия значительно облегчает интерпретацию различных экспериментальных спектров. [c.5]

    Под действием излучений высоких энергий происходят процессы сшивания и деструкции макромолекулы полиэфиров [23 [. Небольшие дозы облучения с применением изотопа Со приводят к упрочнению полиэфирного материала вследствие преобладания процесса сшивания. Доза 1 МДж/кг (10 рад) уже вызывает сильное ухудшение механических характеристик, а при дозе 6 МДж/кг (6-10 рад) полиэфир полностью разрушается [24]. Температура плавления и кристалличность полиэфира при облучении уменьшаются [25 [. При облучении быстрыми электронами происходит амор-физация полиэтилентерефталата с переходом гликольного звена из транс- в гош-форму [26]. При воздействии излучений ядерного реактора полиэтилентерефталат быстро деструктирует [27]. [c.254]

    Нейтронно-активационный анализ (ЫАА). Активационное определение брома выполняют с применением тепловых, надтепло-вых и быстрых нейтронов. Учитывая большие плотности потока активирующих частиц в современных реакторах (10 —10 нейтрон/см -сек) и относительно большие сечения реакций с участием изотопов брома, для его определения в различных материалах в основном используют тепловые и надтепловые нейтроны. В зависимости от временного режима активации анализ ведут по изотопам 8ogj. 82gj, ядерные характеристики и реакции образования которых приведены в главе I. Изотоп в Вг определяют по пику рентгеновского излучения с энергией 0,01163 Мэв, изотоп Вг — по 7-пику с энергией 0,617 Мэв и Вг ( Вг) — по 7-пикам с энергиями 1,04 0,780, 0,618 и 0,544 Мэв (или одному из этих пиков). В соответствии со значениями периодов полураспада перечисленных изотопов время облучения нейтронами по наиболее короткоживущему Вг составляет 1—2 мин., время охлаждения — несколько минут [87, 942]. Определение брома по активности "Вг ведут после 3 мин. облучения в реакторе и 2 час. охлаждения [505, 831]. Продолжительность облучения в методах, основанных на измерении активности самого долгоживущего Вг, зависит от ряда параметров и варьирует в пределах от 30 мин. до 48 час., время охлаждения — от 14 до 170 час. [87, 303, 785, [c.154]

    В Дубне элементом № 103 начали заниматься лишь через четыре года после появления этой первой и, прямо скажем, не слишком убедительной публикации. При облучении америция-243 ионами кислорода-18 получили изотоп 103 с периодом полураспада 35+10 секунд. Б 1966—1967 гг. были более детально изучены его радиоактивные характеристики, в частности сложный спектр альфа-излучения с энергией от 8,35 до 8,60 Мэв и ярко выраженным максимумом вблизи 8,42 Мэв. Затем были предприняты попытки получить и изотоп с массовым числом 257, описанный в работе 1961 г. Однако обнаружить изотоп 103 Го элемента с периодом полураспада около 8 секунд и энергией альфа-частиц 8,6 Мэв так и не удалось ни в одной ядерной реакции, которая бы могла привести к образованию иуотода 403. [c.469]

    По приведенным характеристикам нетрудно догадаться, где какой изотоп получен. Регистрация новых ядер по спонтанному делению — метод и прерогатива Лаборатории ядерных реакций в Дубне регистрация по альфа-излучению и дочерним продуктам — метод и критерий открытия для Лоуренсовской лаборатории в Беркли. (Впрочем, к работе по синтезу элемента № 106 в США были привлечены специалисты еще одной лаборатории, тоже носящей имя изобретателя циклотрона Э. Лоуренса и тоже расположенной в штате Калифорния, но в другом городе — Ливерморе.) Первое сообщение об американской работе датировано сентябрем 1974 г. [c.496]

    Киреев В. А., Курс физпческоИ химии, 3 изд.. М., 1975 Жуховицкий А. А., Шварцман Л. А., Физическая химия, 3 изд., М., 1976 Д а н п э л ь с Ф., ОлбертиР., Физическая химия, пер. с англ., М., 1978 Эткинс П.. Физическая химия, пер. с англ., т. 1—2, М., 1980. М. И. Темкин. ФИЗИЧЕСКИЕ МЕТОДЫ АНАЛИЗА, основаны на измерении физических (гл. обр. ядерных, атомных, молекулярных) характеристик, обусловливакяцих хим. индивидуальность определяемых компонентов. Такими характеристиками м. о. спектры испускания и поглощения электромагн. излучения (радиочастотные, ИК, видимые, УФ, рентгеновские и гамма-спектры), естеств. и искусств, радиоактивность, магн. св-ва и др. Наиб, широкое распространение получили методы спектрального анализа. [c.621]

    Справочник содержит основные характеристики всех стабильных и наиболее часто применяемых радиоактивных изотопов.. Цаются формулы и таблицы, характеризующие прохождения члектронов. легких и тяжелых ионов и гамма-квантов через различные хи.мические элементы в широком диапазоне энергий бомбардируюш,их частиц. Приведены формулы нерелятивистской кинематики ндерных реакций и таблицы пересчета углов и сечений из лабораторной системы координат в систему центра инерции. Дана классификация ядерных реакций, описаны детекторы ионизирующих излучений и изложены практические рекомендации по активационному анализу. [c.924]


Смотреть страницы где упоминается термин Ядерные излучения характеристика: [c.484]    [c.50]    [c.27]    [c.168]    [c.6]    [c.621]    [c.37]    [c.463]    [c.4]   
Применение радиоактивных изотопов для контроля химических процессов (1963) -- [ c.17 , c.18 ]




ПОИСК





Смотрите так же термины и статьи:

Характеристика излучения

Ядерные характеристики



© 2025 chem21.info Реклама на сайте