Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементный анализ метод сжигания

    Методы элементного анализа полимеров, как и других органических веществ, основаны на предварительном разложении их в атмосфере кислорода, аммиака, диоксида углерода или инертных газов до стабильных конечных продуктов, пригодных для дальнейшего химического или физико-химического анализа. Чаще других при анализе высокомолекулярных соединений проводят сжигание в атмосфере чистого кислорода. В результате сгорания сополимеров, состоящих только из атомов углерода, водорода и кислорода, образуются СО2 и Н2О. При наличии в составе сополимера атома азота в продуктах сгорания присутствуют оксиды азота, при наличии атома серы - оксиды серы и т.д. при сжигании в атмосфере кислорода галогенсодержащих соединений образуются соответствующие галогенид-ионы. [c.37]


    Первый прибор Лавуазье для органического элементного анализа методом сжигания. Рисунок из Элементарного курса химии Лавуазье, 1789 г., выполненный мадам Лавуазье. [c.177]

    При выполнении элементных анализов азотсодержащих веществ, как уже говорилось, химики, по предложению Гей-Люссака, стремились получать азот после сжигания в виде элементного азота. Гей-Люссак при исследованиях циана, разработал метод, основанный на определении отношения объемов, образовавшихся при сожжении углекислоты и азота. При этом отпадала необходимость знать навеску исходного вещества перед сожжением. Однако этот метод имел существенные недостатки. В 1833 г. Дюма предложил более точный метод прямого определения азота. В первоначальном приборе, построенном Дюма, применялась ртутная ванна и воздушный насос, что вносило некоторые неудобства при определении. В дальнейшем Дюма заменил воздух в трубке для сжигания углекислым газом, вместо ртути стал применять концентрированный раствор едкого кали. Метод Дюма в более совершенном виде применяется и поныне. [c.196]

    Применение методов сжигания Таблица 28-2 в трубке для элементного анализа органических соединений  [c.234]

    Распространена отгонка с предварительным химическим превращением, т. е. после переведения макро- или микрокомпонента в легколетучие соединения в результате химичес1шх реакций. Один из таких методов — сжигание органических и биологических щюб сухая и мокрая минерализация) (см. гл. 2). Этот метод широко используют в элементном органическом анализе. Например, при подводе воздуха или кислорода происходит окисление пробы и образуются летучие соединения (СО, СО2, N2, ЗОз, 80з, Н2О). Процессы сжигания осуществляют в трубчатых печах различной конструкции. Ле- [c.258]

    Принцип С,Н,К-метода, разработанного австрийским химиком Фрицем Преглем (Нобелевская премия 1923 г.), сохраняется и в современных инструментальных методах элементного органического анализа. Он заключается в разложении точно взвешенной навески пробы с помощью быстрого сжигания (окисления) в потоке кислорода при высокой температуре (от 1000 С до 1800 С), разделении продуктов реакции (каковы они, если образец состоит только из с, Н, N ) и последующем определении небольших количеств газов, образующихся при сгорании, а также в конечном этапе вычислений. [c.489]

    А при программированном нагреве. Конвертор (длина 10,2 см, диаметр 6 мм) с карбидом кальция заменяли новым со свежей набивкой после проведения каждого цикла анализов. Все подводящие линии, во избежание конденсации воды, нагревались. При программированном нагреве хроматографической колонки температуру повышали со скоростью 6,4 град/мин. от комнатной до 400° С. Для расчета содержания элементов в анализируемых пробах площади хроматографических ников определяли планиметром. Значения калибровочного коэффициента вычисляли на основе данных по сжиганию тио-мочевины. Для определения времени удерживания пиков простых продуктов в условиях опыта были проведены анализы тиомочевины, соды и двуокиси углерода. Результаты анализа чистых соединений различного элементного состава и структуры показали хорошее согласие с теоретически вычисленными величинами. Среднее отклонение для азота составляет 4 0,58%, для углерода -40,52"о и водорода +0,22%. Метод применим для анализа серу-и галоидсодержащих соединений. Общая продолжительность анализа 1 час. 45 мин. [c.148]


    При анализе топлив часто определяют содержание отдельных классов сернистых соединений, так как одни из них (сероводород, меркаптаны) обладают сильной коррозионной активностью, а другие практически инертны. В нефтях обычно определяют суммарное содержание серы. Для этого навеску нефти сжигают в бомбе (ГОСТ 3877—49) или в лодочке, помещая ее в печь для элементного анализа (ГОСТ 1437—75). Для проведения анализа по первому методу нужно более 20 ч наиболее простым и точным является метод сжигания навески иефти в печи, не связанный с последующим весовым определением серы в виде BaSO,. [c.61]

    Сжигание проводят в кварцевых трубках применяя специальные наполнители, добиваются того, чтобы получались необходимые продукты, и способствуют удалению побочных продуктов реакции (SOg, например, окислами свинца, галогены — металлизованной серебром шерстью), при зтом одновременно происходит восстановление окиси азота в азот. Обычно водород и кислород определяют одновременно, азот — отдельно. Водород, абсорбируют в виде воды на a la или другом осушителе, углерод в виде Oj на натронной извести или натронном асбесте. Азот определяют газоволюмометрическим методом. В настоящее время в связи с автоматизацией методов анализа все три элемента испаряют одновременно и затем определяют различными методами, а также методом газовой хроматографии [63, 64]. Большой вклад в развитие элементного анализа внес Либих, который улучшил методы макроанализа, предложенные Преглем, применительно к полумикро- и микроопределениям веществ (навески соответственно 20— 30 мг и <2 мг) [71]. [c.383]

    Метод сжигания в колбе с кислородом является одним из перспективных методов количественного элементного анализа. Он включен во многие фармакопеи мира, в том числе Международную и Европейскую, но пока ограниченно используется в отечественном фармацевтическом анализе. Метод основан на разрушении органического вещества сожжением в колбе, наполненной кислородом, растворении образовавшихся продуктов в поглощающей жидкости н последующем определении элементов, находящихся в растворе в виде ионов или молекул. Определение выполняют различными химическими или физико-химическим и методами. Метод может быть использован для качественного и количественного определения органически лекарственных веществ, содержащих в молекуле галогены, с у, фосфор, азот н другие элементы. Преимущества метода состоят в быстроте процесса минерализация, занимающего несколько секунда исключении потерь элемента в процессе минерализации, проходящем в герметически закрытой колбе возможности унификации применительно к различным группам соединений высокой чувствительности анализа на заключительной его стадий и широком сочетании метода на этой стадии с физико-хнмическими методами. Большие перспективы открывает применение метода сжига- [c.134]

    Методы элементного анализа, основанные на сжигании образцов в токе кислорода, имеют достаточно длинную историю развития. Она начинается с работ Лавуазье по исследованию масел. В качестве основных этапов развития отмечаются [4] использование Праутом фиксированного количества кислорода для окисления, что решило проблему определения содержания в образце водорода, и применение Риггом и Преглем твердых окислителей, что позволило создать современные СНМ-анализаторы. [c.36]

    Определение степени чистоты, т.е. содержания остаточных нецеллюлозных примесей - лигнина, пентозанов, смол, золы, отдельных химических элементов. Для этой цели используют методы анализа, аналогичные используемым при анализе древесного сырья. Содержание золы определяют методом сжигания, а элементный состав золы эмиссионным спектральным анализом и другими методами. Смолы определяют экстрагированием органическими растворителями, главным образом, ме-тиденхлоридом. Для определения остаточных пентозанов их превращают в фурфурол с последующим его определением фотоколориметрическим методом. Прямые методы определения лигнина применяют главным образом в исследовательской практике, а в производственном контроле используют косвенный метод - определение жесткости по перманганатным числам. Кроме того определяют сорность целлюлозы подсчетом числа соринок по стандартной методике. [c.541]

    Элементный анализ нефти иа содержание углерода и водорода так же, как и для ТГИ, основан на сжигании ее или нефтепродукта до диоксида углерода (IV) и воды. По их количеству рассчитывается содержание С и Н. Метод определения содержания серы основан также на сжигании навески нефтепродукта в кварцевой трубке, а улавливании сернистого газа S0, и окисления его в серный газ SO,. Содержание азота определяют методом Дюма или Къельдаля. Содержание кислорода определяют по разности. [c.59]


    Элементный состав определялся на анализаторе Perkin— Elmer-240 методом классического элементного анализа, основанного на сжигании образца. Содержание кислорода определялось ио разности. Отношение (Н/С)ат рассчитывалось по данным элементного анализа  [c.50]

    Как известно, хроматографический метод разделепия и анализа растительных красящих веществ в жидком растворе на основе адсорбции был впервые описан Цветом в 1906 г. [1J и термин хроматография был предложен им. Рассматриваемая здесь разновидность хроматографии — фронтальный анализ — был впервые применен в жидкостной хроматографии Тизелиусом в 1940 г. [2]. Что касается фронтальной газовой хроматографии, то она применялась гораздо раньше как технический процесс, главным образом для очистки воздуха, нанример, в противогазах и для регенерации наров растворителей. Классические методы органического элементного анализа, а именно улавливание нри помощи СаСЬ водяного нара, образующегося при сжигании, и поглощение двуокиси углерода в трубках с натронной известью, можно также рассматривать как метод фронтальной газовой хроматографии, хотя в этих случаях поглощение обусловлено не адсорбцией, а химическими реакциями и поэтому необратимо (обратимость, т. е. возможность десорбции, в принципе неизбежна лишь в проявительных и вытеснительных методах). [c.179]

    Определение элементных углерода и водорода удобнее всего проводить при 900—1000 °С в обычной аппаратуре для анализа С, Н, N методом сжигания (например, Перкин-Элмер 240 ). В качестве добавки для полного окисления рекомендуют смесь 75% МпОг, 8% К2СГ2О7, 17% WO3 [207]. [c.250]

    Кали-аппарат был основным прибором для элементного анализа в течение 100 лет, претерпев за это время лишь небольшие усовершенствования (например, во второй половине XIX в. нагревание стали осуществлять не раскаленным углем, а газом позднее был изменен способ сжигания вещества — сжигание стали проводить в токе кислорода, хотя этот метод был предложен еще Лавуазье см. выше). В основном же принцип элементного анализа оставался неизмен- [c.147]

    Если требуется определить только легколетучие углеводороды, например, бензин или петролейный эфир, то их можно, выделить из пробы выпариванием, а затем определить содержание их в парах методом элементного анализа — сжиганием до СОг в специальном газоанализаторе, адсорбцией углеводородов на активном угле с последующим определением по увеличению массы или по реакции помутнения. Экстракты углеводородов можно далее разделить хроматографически в тонком слое и проявить с помощью соответствующей цветной реакции. [c.146]

    Отметим, что применение описанных методов для определения обменной емкости катионитов в статических или в динамических условиях [27, 28], особенно при определении обменной емкости фосфоновых катионитов, способных изменять протонодонорную характеристику функциональных групп при термообработке [28], не всегда позволяет получать надежные результаты, поэтому в отдельных случаях содержание фосфора целесообразно определять методом элементного анализа. Надежные результаты при определении содержания фосфора в катионитах можно получить, используя метод Шёнигера, основанный на сжигании в колбе с кислородом 8—12 мг сухой смолы, поглощении образующихся соединений подкисленной водой и фотометрическом определении фосфат-ионов [29—31]. Аналогичный метод, но с добавкой в поглотительный раствор вместо кислоты 2—3 капель пероксида водорода, применяется для определения содержания серы в катионитах [32]. [c.11]

    Метод определения элементного состава золы с помощью эмиссионного анализа [165 состоит в получении спектров элементов золы на спектрографе ИСП-28 при сжигании их в дуге угольных электродов. Навеску золы смешивают с основой (фтористый литий и уголь) в определенных соотношениях. Методика позвиляет одновременно определять присутствие и количество 23 элементов Ре, РЬ, 2п, Си, 8п, Са, М , Ва, А1, 81, Р, Т1, V, Сг, Со, Ч, 5г, Мо, g, Сс1, 5Ь. В1 и 2г. [c.190]

    Анализ соединения — это наиболее важный критерий чистоты и индивидуальности. Обычно анализ органических соединений на углерод и водород проводят путем сжигания образца. Небольшой, точно взвешенный образец вещества нагревают в токе чистого кислорода в электрической печи, а образующиеся газы пропускают через предварительно взвешенные трубки, наполненные специальными адсорбентами для двуокиси углерода и воды. Процентное содержание углерода и водорода в молекуле можно вычислить по весу образовавшихся воды и углекислого газа. Остальные элементы определяют стандартными методами количественного микроанализа. Органическое соединение считают удовлетворительно чистым, а его состав удовлетворительно сов-падающихм с предполагаемым, если найденное процентное содержание элементов отличается от вычисленного не более чем на 0,3%. После того как с помощью анализа показана чистота и найден элементный состав соединения, необходимо найти молекулярный вес, что можно сделать такими методами, как измерение плотности газа (гл. 6) или коллигативных свойств (гл. 34). После этого можно определить формулу молекулы. [c.167]

    На хроматографировании реакционноспособных фтористых соединений, образующихся при сжигании органических веществ в атмосфере фтора, основан новый метод элементтного анализа [ИЗ]. Фтористый водород, тетрафторид углерода, а также избыток элементного фтора анализируют после сжигания на колонке с 20% политри-фторхлорэтилена на твердом носителе из аналогичного полимера. Избыточный фтор, мешающий определению С 4, задерживается на форколонке с КС1, а образующийся при этом хлор поглощается в реакторе с КОН и активированным углем. [c.72]

    В связи с широким применением высокозольных тон ив для получения электрической и тепловой энергии возникла проблема утилизации отходов, полученных при сжигании углей. Существующие ныне методы не учитывают элементный химический состав золошлакового материала. Анализ способов получения металлов и сравнение состава руд на алюминий и золошлакового материала позволили предложить способ извлечения металлов из отходов сжигания угля методом электролиза, т. е. более полного рационального использования высокозольных углей. Возникает потребность более глубокого изучения химического и структурного состава золы и шлака с учетом особенностей их образования. [c.111]


Смотреть страницы где упоминается термин Элементный анализ метод сжигания: [c.460]    [c.458]    [c.187]    [c.544]   
Основы аналитической химии Часть 2 (1979) -- [ c.2 , c.234 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ элементный

Сжигание



© 2025 chem21.info Реклама на сайте