Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бренстеда ионизация

    По Бренстеду ионизация кислоты и основания представляет собой протолитическую реакцию с растворителем. Ионизация оснований вызвана сродством их молекул к протону растворителя и протекает тем полнее, чем больше сродство, т. е. чем сильнее основание. Кис- [c.126]

    Следовало бы ожидать, что уравнение (XVI.3.4) будет удовлетворяться, если процесс ионизации будет идти строго параллельно процессу образования активированного комплекса. Так как первый процесс сводится к переносу протона от НА к растворителю, в то время как последний представляет собой частичный перенос протона от НА к реагенту, совершенно неудивительно, что изменение свободной энергии в этих двух процессах может быть связано. Из того факта, что переходное состояние представляет собой только частичный перенос протона и, следовательно, обусловливает только часть общего изменения свободной энергии ионизации, можно заключить, что величина показателя а должна лежать в интервале от О до 1. Однако точного линейного соотношения следовало бы ожидать только в том случае, если бы не было специфических взаимодействий между субстратом и НА или по крайней мере таких взаимодействий, которые отличались бы от взаимодействия между растворителем и НА. На то, что такие взаимодействия все н е существуют, указывают наблюдаемые иногда отклонения от уравнения Бренстеда. [c.485]


    В ряду однотипных катализаторов кислотного катализа между константой скорости кислотного катализа /г д и константой кислотности катализатора /Снд (константой ионизации кислоты — катализатора) имеется соотношение линейности Бренстеда — Поляни  [c.424]

    Связь типа соотношения линейности Бренстеда — Поляни имеет место и в явлениях кислотно-основного катализа в ряду сходных катализаторов данной реакции константа скорости кислотного катализа и константа кислотности катализатора (константа ионизации кислоты—катализатора) связаны соотношением [c.291]

    Подобно соотношениям Бренстеда для соединений типа I, логарифмы констант скоростей реакций, протекающих в боковой цепи У, или логарифмы констант равновесий, затрагивающих группу У, линейно связаны с константами ионизации соответствующих бензойных кислот, имеющих те же заместители [c.166]

    В теории Бренстеда этот процесс рассматривается как ионизация кислоты ЫН4, по природе, не отличающийся от аналогичной ионизации любой другой кислоты, скажем, уксусной. По классическим представлениям этот процесс рассматривается как гидролиз соли слабого основания. [c.234]

    В теории Бренстеда этот процесс рассматривается как ионизация кислоты NH4+, по природе не отличающаяся от аналогичной ионизации любой другой кислоты, скажем, уксусной. По классическим [c.271]

    К 20-м гг. было твердо установлено, что кислотно-основные свойства обусловлены как участием иона Н+, так и взаимодействием с растворителем и проявляются не только в водных растворах. Отмечалось, что некоторые растворители обладают амфотерными свойствами, что приводит к их ионизации. Налицо были необходимые предпосылки для теории, которая позволила бы дать такие определения кислоты й основания, которые ...логически связывали понятия кислоты и основания друг с другом, освещали причину исключительного положения этих веществ и, наконец, позволили бы определять кислоты и основания, сво йства которых проявляются универсально в различных растворителях (Бренстед). [c.589]

    Как видно из схемы, протекание процесса можно объяснить ионизацией молекулы Н2О, находящейся во внутренней координационной сфере, с последующим.переходом протона к иону ОН . Подобное объяснение кислотных свойств амфотерного гидроксида подтверждает теорию Бренстеда и Лоури. Однако по этой теории нельзя определить кислотно-основные функции веществ, не содержащих подвижный атом водорода, например в реакции обмена между КР и ВРз с образованием. комплексной соли К[ВР4]. [c.167]


    Бренстед рассматривает кислоту как донор протона, а основание — как акцептор протона. Так, НС1 — кислота, потому что она отдает протон молекуле воды при ионизации в водном растворе (стр. 226) NHg — основание, так как оно может принять протон, образуя ион NH . [c.228]

    В соответствии с протолитической теорией кислот и оснований Бренстеда—Лоури в общем случае для ионизации однокислотного слабого основания В в водных растворах можно записать  [c.121]

    Подчеркнем, что здесь КаК Кь — соответственно константы ионизации слабой кислоты НА и слабого основания ВОН, не являющихся сопряженными в смысле протолитической теории Бренстеда—Лоури. [c.135]

    Н. А. Измайлов развил теорию Бренстеда, учтя ионизацию продуктов ассоциации кислот и оснований с растворителем, а не только электростатический эффект взаимодействия между ионами, как это сделал Бренстед. Химическое взаимодействие кислот и оснований с растворителем очень существенно для усовершенствования теории Бренстеда. [c.56]

    Для общего основного и общего кислотного катализа между константами скорости каталитических реакций /г ) и константами основности катализирующих оснований или константами ионизации катализирующих кислот выполняется корреляционное соотношение Бренстеда, которое записывается в виде [c.345]

    Систематизированы данные о константах ионизации около 4500 органических соединений кислотной природы в водных растворах [110], а также суммированы сведения о методах определения [111] и расчета [112] величин р/Са. Особое внимание уделено соединениям с кислотной группировкой С—Н [113]. Известны константы ионизации большого числа кислот и осно ваний Бренстеда в водных растворах напротив, сведения о соответствующих величинах р/Са для неводных растворителей сравнительно бедны. [c.133]

    Необходимо иметь в виду, что в случае общих кислот или оснований, содержащих больше одной ионизируемой группы, константы ионизации обычно испытывают взаимное влияние. При использовании соотношения Бренстеда для анализа реакций с участием таких соединений необходимо вводить статистические поправки этот вопрос подробно рассмотрен в работе Бренстеда и Педерсена [1]. [c.89]

    То обстоятельство, что среда протекания ферментативных реакций характеризуется почти нейтральным значением pH, накладывает жесткие ограничения на величину рКа кислотных (основных) групп, способных выступать в роли эффективных общих кислотных (общих основных) катализаторов. Этот вывод является прямым следствием обратной взаимосвязи между эффективностью катализатора и его способностью к ионизации. Ниже приводится доказательство существования такой взаимосвязи для общего основного катализа I" ]. В случае общего кислотного катализа ход рассуждений аналогичен. Для констант скорости реакций, протекающих по механизму общего основного катализа кв, справедливо следующее соотношение (уравнение Бренстеда — Педерсена) (гл. 5)  [c.138]

    Бренстед предложил эмпирическое соотношение, характеризующее кислотно-основный катализ [136]. Этот процесс сводится к переносу водорода. Каталитическая способность кислот связана с их константой ионизации. Химическая реакция кислотно-оснбвного катализа записывается следующим образом  [c.411]

    В 1923 г. и, вероятно, даже немного позже я с удовлетворением сообщал студентам в курсе качественного анализа, что НС1 в бензоле является менее сильной кислотой, чем в воде, так как в бензоле ионизация происходит в меньшей степени, и что это подтверждается отсутствием реакции между карбонатом кальция и бензольным раствором НС1. К 1927 г. я уже не сомневался, что 1) вода является основанием в том же смысле, что и аммиак 2) в водном растворе ионы водорода в действительности находятся в форме Н3О+, что аналогично NH в жидком аммиаке 3) если руководствоваться данными по скорости или равновесию любой гомогенной реакции, то в бензоле НС1 является более сильной кислотой, чем в воде 4) выступая в качестве основания, вода маскирует или нивелирует различия в силе сильных кислот и препятствует определению в водном растворе относительной силы сла- бых оснований. Этот переворот в моих представлениях был вызван главным образом идеями Ганча [17], хотя сильное влияние оказал также Бренстед и работа Франклина по растворам в жидком аммиаке. [c.351]

    Шатенштейн и Измайлов (1949 г.) показали, что реакция между кислотами и основаниями на стадии диссоциации протекают значительно сложнее, чем это следует из теории Бренстеда. Сначала образуется молекулярное соединение за счет водородной связи между атомом водорода кислоты и электроотрицательным атомом основания, затем следуег ионизация и диссоциация  [c.206]

    Рассмотрение общего кислотно-основного катализа как реакции передачи водорода , вызванной кислотами и основаниями, включает, естественно, вопрос о связи каталитической сплы кислот с их константой ионизации. Еще раньше было устаповлено, что между этими двумя константами существует определенная связь. Тейлор [33] предложил первое количественное соотношение, в котором кислотпо-каталитическая константа кислоты /iha была пропорциональна K , т. е. корню квадратному из константы ионизации. Предложенное позднее [34] уравнение Бренстеда для общего кислотно-основного катализа широко используется как эмпирическое соотношение  [c.484]


    Константа а рассматривается как мора чувствительности реакции (катализа) к кислотности (или основности) катализатора. С точки зрения изменения свободной энергии мон но сказать, что а есть мера той доли изменения свободной энергии ионизации, которое происходит при образовании активированного комплекса. Соотношение Бренстеда нельзя использовать в виде уравнения (XVI.3.1). Б величины Ацл и К а должны быть внесены поправки, которые возникают из-за изменений симметрии и не влияют на внутренние химические и.шенения, происходящие в системе. Поскольку К я к выражены в моль/л, можно ожидать, что двухосповпые кислоты, н которых две карбоксильные группы удалены друг от друга на значительное расстояние, будут в 2 раза более эффективными (на 1 моль), чем одноосновные кислоты, такие, как уксусная кислота. Наоборот, сравнив каталитическую активность оснований, можно прийти к выводу, что формиат-ион H O в 2 раза эффективнее в реакцип присоединения протона, чем этокси-ион С2Н5О, так как первый может присоединять Н к любому из двух ато- [c.485]

Рис. 71. Зивисимость константы скорости катализируемого кислотами гидролиза этилортоа-цетата от константы ионизации катализирующей кислоты (по данным Бренстеда) Рис. 71. Зивисимость <a href="/info/3323">константы скорости</a> катализируемого <a href="/info/48098">кислотами гидролиза</a> этилортоа-цетата от <a href="/info/36392">константы ионизации</a> <a href="/info/208913">катализирующей кислоты</a> (по данным Бренстеда)
    Согласно теории замедленного разряда при постоянном электродном потенциале =сопз1, измеренном относительно некоторого стандартного электрода сравнения, изменение работы выхода электрона в вакуум при переходе от одного металла к другому не должно отражаться на энергии активации стадии разряда—ионизации. Этот вывод был получен как следствие нетермодинамического принципа Бренстеда — Поляни — Семенова поэтому он требует физического обоснования и экспериментальной проверки. [c.270]

    Основные уравнении теории замедленного разряда получены из соотношения Бренстеда — Поляни — Семенова (соотношения БПС), согласно которому изменение энергии активации в ряду подобных химических реакций составляет некоторую долю а от изменения теплового эффекта. Все закономерности стадии разряда — ионизации, вытекающие из соотношения БПС и основных положений теории двойного электрического слоя, подтверждаются экспериментальными данными. Естественно, возникает необходимость дать физическое обоснование соотношению БПС в специфических условиях протекания электрохимических реакций. Первое такое обоснование, которое можно рассматривать в качестве теории элементарного акта разряда, было предложено Ю. Гориути и М. Поляни. Основное положение теории Гориути — Поляни заключается в том, что энергия активации стадии разряда — ионизации обусловлена растяжением химических связей в молекулах или ионах реагирующих веществ. Гориути и Поляни развили свою теорию на примере реакции разряда ионов водорода Н3О+ + -Ье - -Нзд +НаО. Элементарный акт этой реакции состоит в том, что ОДИН ИЗ протонов иона гидроксония переходит на поверхность электрода и, соединяясь с электроном, дает адсорбированный атом водорода. [c.276]

    Основные уравнения теории замедленного разряда получены из соотношения Бренстеда — Поляни — Семенова (соотношения БПС), согласно которому изменение энергии активации в ряду подобных химических реакций составляет некоторую долю а от изменения теплового эффекта. Все закономерности стадии разряда — ионизации, вытекающие из соотношения БПС и основных положений теории двойного электрического слоя, подтверждаются экспериментальными данными. Естественно, возникает необходимость дать физическое обоснование соотношению БПС в специфических условиях протекания электрохимических реакций. Первое такое обоснование, которое можно рассматривать в качестве теории элементарного акта разряда, было предложено Ю. Гориути и М. Поляни в 1935 г. [c.294]

    Шатенштейн предлагает изменить формулировки понятия кислот и оснований так, чтобы они учитывали кислотно-основное взаимодействие, не завершившееся ионизацией и поэтому не определяемое схемой Бренстеда. Он считает, что образование водородной связи является уже проявлением кислотно-основных свойств. Основываясь на этом, а также на том, что электропроводность не возникает при многих кислотно-основных взаимодействиях, Шатенщтейн предлагает такие формулировки понятий кислот и оснований. [c.291]

    Дж. Бренстед и Т. Лоури (1923) разработали более общую протолитиче-скую, или протонную, теорию кислот и оснований, согласно которой кислотой называется вещество, способное отдавать протоны, а основанием — вещество, способное их присоединять, т. е. кислота рассматривается как донор протона, а основание - как акцептор протона. Например, соединение НС1 является кислотой, потому что отдает протон молекуле воды при ионизации в водном растворе, а вода является основанием, так как она принимает протон  [c.30]

    Таким образом, согласно протолитической теории кислот и оснона-ний Бренстеда—Лоури, кислота— это вещество, выделяющее при ионизации протоны, а основание — вещество, присоединяющее протоны. В [c.111]

    Как уже отмечалось выше, исторически раньше уравнения Гаммета появилось уравнение Бренстеда, которое тоже является одной из форм выражения принципа ЛСЭ (разд. 3.3.7). В уравнении Бренстеда (3.23) и (3.24) %к иропортщоиалеи свободной энергии активации каталитической реакции, а - свободной энергии ионизации катализатора. Легко показать, что между уравиегшями Бренстеда и Гаммета имеется тесная связь. Если круг катализаторов ограничить мета- и га/га-замещенными бензойными кислотами, то, поскольку константы Гаммета определяются из значений бензойных кислот, должна наблюдаться следующая корреляция  [c.304]

    Реакция гидролиза ацетат-иона (СН3СОО ), в которой образуются гидроксид-ионы с одновалентной протонизацией аниона, представляет собой реакцию щелочной ионизации. В теории Бренстеда-Лоури растворитель рассматривается не только как среда, но и как вещество, непосредственно участвующее в протолитических реакциях. [c.89]

    Альтернатива протонного или апротонного возбуждения полимеризации в присутствии кислот Льюиса возникает лишь при чрезвычайно низких концентрациях возможных активирующих оснований. Если протогенная добавка присутствует в системе до начала стадии катализа (инициирования) в количествах, соизмеримых с количеством кислоты Льюиса, то всегда будет происходить протонизиция олефина и образование соответствующего комплексного противоиона. В подобных условиях протекает донорно-акцепторное взаимодействие кислот Льюиса и Бренстеда с образованием комплексных соединений, которые в отличие от исходных протонодоноров представляют более сильные, но неионизированные кислоты. Ионизация комплексов и связанное с ней иниции- [c.39]

    Объемный метод определения в неводных растворителях. Весьма перспективный метод титрования органических соединений в неводных растворителях основан на теории Бренстед и Лоури," согласно которой сила кислот и оснований не обязательно является функцией степени ионизации, и, что кислота, будучи сильной в водных распворах может быть еще более сильной в среде органического растворителя. Это касается и оснований. Так, хлорная, серная, соляная и трихлоруксусная кислоты равносильные в водном растворе, в безводной уксусной [c.97]

    По теории протолнтического равновесия И. Бренстеда растворители делятся на протолитические (амофипротоы-ные) и апротонные. Протолитические растворители способны к самоионизаци и, а их кислотность или основность определяются способностью отщеплять или присоединять протоны в химической реакции с растворенными веществами. Апротонные растворители, такие как нитрометан, бензол, пиридин, тетрагидрофуран, диоксан и другие, не способны к само-ионизации. [c.5]

    К важнейшим К. с. относятся 1) ур-ние Бренстеда для р-ций кислотно-осн. катализа, связывающее константу скорости k р-ции с константой ионизации Ка катализатора-к-ты (или константой основности катализатора-основания) Igfe = арКа 4- С, где а и С — эмпирич. параметры для данной р-ции 2) ур-ние Поляни — Семенова для гомолитич. р-ций отрыва атома от молекулы своб. атомом или радикалом, связывающее энергию активации р-ции с ее тепловым эффектом Q Е= Еа -h РО. где и Р — константы 3) ур-ние Гаммета для р-ций аром, соед., связывающее k с нек-рой эмпирич. характеристикой а замещенного бензольного колы(а в мета- или плра-положении к реакц. центру  [c.277]


Смотреть страницы где упоминается термин Бренстеда ионизация: [c.282]    [c.287]    [c.16]    [c.166]    [c.277]    [c.280]    [c.964]    [c.228]    [c.515]    [c.233]    [c.344]   
Современная общая химия (1975) -- [ c.2 , c.75 , c.78 ]




ПОИСК





Смотрите так же термины и статьи:

Бренстед



© 2025 chem21.info Реклама на сайте