Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексы ионизация

    С другой стороны, понижение концентрации данного иона при прибавлении того или иного маскирующего средства зависит от того насколько ионизирован образующийся комплексный ион. Как известно, ионизация комплексов может быть охарактеризована величиной так называемой константы нестойкости . Например, для комплексных ионов [Ag(NHa)2]+ и [Ag( N)2] , ионизирующих по уравнениям  [c.95]


    Константа а рассматривается как мора чувствительности реакции (катализа) к кислотности (или основности) катализатора. С точки зрения изменения свободной энергии мон но сказать, что а есть мера той доли изменения свободной энергии ионизации, которое происходит при образовании активированного комплекса. Соотношение Бренстеда нельзя использовать в виде уравнения (XVI.3.1). Б величины Ацл и К а должны быть внесены поправки, которые возникают из-за изменений симметрии и не влияют на внутренние химические и.шенения, происходящие в системе. Поскольку К я к выражены в моль/л, можно ожидать, что двухосповпые кислоты, н которых две карбоксильные группы удалены друг от друга на значительное расстояние, будут в 2 раза более эффективными (на 1 моль), чем одноосновные кислоты, такие, как уксусная кислота. Наоборот, сравнив каталитическую активность оснований, можно прийти к выводу, что формиат-ион H O в 2 раза эффективнее в реакцип присоединения протона, чем этокси-ион С2Н5О, так как первый может присоединять Н к любому из двух ато- [c.485]

    Рассмотренные особенности структуры жидкости и способность молекул перемещаться относительно друг друга предопределяют возможность их ионизации. Рассмотрим в качестве примера поведение молекул воды в соседних тетраэдрических комплексах, выделенных на схеме жирным шрифтом  [c.120]

    Таким образом, на один первично образованный ион Н2О+приходится пять разлагающихся молекул воды. Закон сохранения энергии при этом не нарушается, так как потенциал ионизации молекулы Н2О составляет 13 в, а для разложения пяти молекул Н2О необходима энергия, равная приблизительно 5X2,5 = = 12,5 эв. По теории горячих точек , разработанной Ливингстоном (1936), энергия, выделяющаяся при нейтрализации центрального иона, нагревает комплекс до высокой температуры, т. е. непосредственно после нейтрализации комплекс обладает энергией, которую он имел бы, если бы существовал в виде достаточно большой массы газа при некоторой эквивалентной температуре. Конечно, малого числа молекул, составляющих комплекс, недостаточно для определения температуры в обыч- [c.252]

    Кроме рассмотренных факторов следует отметить также влияние избытка маскирующего агента. Чем больше его концентрация в растворе, тем сильнее понижается степень ионизации комплекса, а значит, и концентрация связываемого иона. Например, расчет показывает, что при употреблении соответствующего уравнению реакции количества K N осадок Agi при действии KI должен выпадать. И только вследствие того, что фактически всегда прибавляют некоторый избыток K N, Ag+-noH оказывается замаскированным. [c.96]


    Определение констант равновесия комплексообразования. Спектрофотометрический метод широко применяется не только для определения констант ионизации кислот и оснований, но и может быть использован для нахождения констант равновесия процессов образования различных комплексов. На примере взаимодействия иода с циклогексеном в гексане рассмотрено применение УФ-спектроскопии для определения константы равновесия реакции образования комплексов донорно-акцепторного типа. На рис. 13 приведены УФ-спектры растворов иода и циклогексана в гексане и их смеси. Поглощение в области 300 нм связано с образованием комплекса с переносом заряда  [c.26]

    Положительный заряд углерода бензольного кольца у таких соединений менее определенно выражен и связь С—Н менее ослаблена, чем у сим, полинитросоединений. Поэтому, если допускать протонный механизм образования комплекса (ионизация водорода из кольца и присоединение к основанию), то противоречия также не будет. [c.302]

    Следовало бы ожидать, что уравнение (XVI.3.4) будет удовлетворяться, если процесс ионизации будет идти строго параллельно процессу образования активированного комплекса. Так как первый процесс сводится к переносу протона от НА к растворителю, в то время как последний представляет собой частичный перенос протона от НА к реагенту, совершенно неудивительно, что изменение свободной энергии в этих двух процессах может быть связано. Из того факта, что переходное состояние представляет собой только частичный перенос протона и, следовательно, обусловливает только часть общего изменения свободной энергии ионизации, можно заключить, что величина показателя а должна лежать в интервале от О до 1. Однако точного линейного соотношения следовало бы ожидать только в том случае, если бы не было специфических взаимодействий между субстратом и НА или по крайней мере таких взаимодействий, которые отличались бы от взаимодействия между растворителем и НА. На то, что такие взаимодействия все н е существуют, указывают наблюдаемые иногда отклонения от уравнения Бренстеда. [c.485]

    Кислота определяется, как вещество, обладающее измеримой способностью отщеплять водородные ионы. С этой точки зрения сила кислот представляет собой количественное выражение этой способности. Гидролиз, по Т. Лоури, протекает через предварительную ионизацию двойной связи, т. е. обычная форма эфира под действием ионов Н+ или ОН" переходит в амфотерную молекулу. Принципиально реакция заключается в присоединении элементов воды с образованием приведенного выше комплекса эфир Н О. [c.550]

    При комплексонометрических титрованиях нужно иметь в виду, чти ЭДТУ — четырехосновная кислота. Ступенчатые константы ее ионизации отвечают значениям р/( 2,0 2,7 6,2 10,3. В образующихся комплексах ионы металла замещают водородные ионы двух или более карбоксильных групп реагента. Поэтому pH раствора имеет большое значение при титровании комплексоном П1. [c.338]

    Здесь следует особо отметить, как важно указание в растворе , сделанное выше. Первая энергия ионизации натрия является мерой способности газообразного атома Na терять электрон, образуя газообразный ион. В отличие от этого окислительный потенциал является мерой способности твердого Na терять электрон, образуя гидратированный ион натрия в водном растворе Для большинства химических применений последняя характеристика имеет гораздо более важное значение. В некоторых случаях в результате окисления металла в растворе образуется не гидратированный катион, а оксидный комплекс, например [c.431]

    Поскольку, как показано в предыдущем разделе, важнейшими этапами реакции гидрирования бензольного кольца являются стадии образования я-комплекса, а также образования и разрушения связи атома углерода с металлом, присутствие в бензольном кольце заместителей, оказывающих влияние на распределение электронной плотности или, другими словами, на потенциал ионизации, обязательно должно сказываться на скорости гидрирования. [c.138]

    Асфальтены — вещества, имеющие различные фрагменты, отличающиеся друг от друга электронной неоднородностью. По-видимому, каждый участок характеризуется средними значениями потенциала ионизации и.сродства к электрону. Поэтому в такой системе создаются благоприятные условия для образования комплексов с переносом заряда, в которых один участок или одна молекула является донором, другая — акцептором. [c.284]

    Если теперь вернуться к рассмотрению механизма влияния алкильных групп в бензоле, то следует в первую очередь отметить, что их накопление приводит к уменьшению потенциала ионизации и увеличению электронодонорности кольца, а это облегчает образование Л-комплексов. Следовательно, стабильность я-комплексов возрастает от бензола к мезитилену. Между тем считают , что гидрирование протекает тем легче, чем устойчивее комплекс катализатора с гидрируемым веществом. Данные, полученные при гидрировании на каталитических системах триэтилалюминий — ацетилацетонаты железа и никеля, подтверждают это предположение. Однако в случае каталитических систем триэтилалюминий — ацетилацетонаты хрома и молибдена увеличение числа алкильных групп л бензольном кольце приводит к увеличению кажущейся энергии активации, хотя устойчивость я-комплексов при этом должна расти в том же ряду (рис. 8). [c.147]


    Р = 1 не отвечают бимолекулярному процессу, так как для последнего характерны значения = 42—84 кДж/моль и 5= = = 20—40 э. е. Тот факт, что энергии активации, рассчитанные для Га и гь, практически близки, еще не указывает на идентичное строение переходного состояния двух реакций. Кроме того, поскольку скорость для дифенилметана меняется незначительно при изменении начальных концентраций компонентов, а для бензола скорость существенно зависит от концентрации, следовательно общей реакцией является изменение степени по бензолу. На основании вычисленных параметров активации можно считать, что первая стадия реакции превращения — это образование поляризованного промежуточного комплекса дифенилметана и хлорида алюминия, вторая — определяющая скорость реакции — ионизация его с образованием бензил-катиона  [c.214]

    Приближенно считаем, что длина связей в активном комплексе, вдоль которых передается протон, а также форма кривых потенциальной кривой для обоих катализаторов одинаковы. Кривая потенциальной энергии второго катализатора располагается выше кривой потенциальной энергии первого катализатора на величину А (АН), равную разности теплот ионизации обоих катализаторов (отрезок ас), а энергии активации процесса протонизации для обоих катализаторов различаются на меньшую величину АЕ (отрезок аЬ ). При этом [c.412]

    В присутствии ВРз ионизация усиливается благодаря связыванию иона Р" и образованию комплекса  [c.133]

    Ванадий(1П) в AN образует с ионами хлора V l3(AN)3 и [V" l4(AN)2] . В PD с трихлоридом ванадия, по-видимому, будет происходить аутокомплексообразование, а в ТМР, в котором не обнаружено никаких анионных хлоро-комплексов,— ионизация [17]. Аналогично ведет себя титан(П1) [17]. [c.211]

    Ионизация. Многие вещества приобретают свой заряд частично или полностью путем ионизации. Если частица или поверхность имеет диссоциирующие группы, ионизация, этих. групп б удет сообщать поверхности заряд противоположного знака, чем у отделившейся группы. Например, белки обязаны своим зарядом в значительной степени ионизации амино- и карбоксильной групп. Типичные лиофобные коллоиды состоят из трех частей 1) ионогенного комплекса, ионизация которого являе гся причиной заряда коллоида, 2) компенсирующих ионов, или, как они иногда называются, противоионов, которые отделяются от ионогенного комплекса и уравновешивают заряд на коллоидной частице, вследствие чего свободный заряд раствора в целом равен нулю, и 3) из нейтральной части, которая представляет незаряженное ядро частицы. Например, в золе золОта Бредига, как полагают, АиСЬН является ионогенным комплексом. Этот комплекс расположен на поверхности частицы металлического золота и ионизирует следующим образом  [c.190]

    Введение добавок, вероятно, облегчает ионизацию п-комп-лекса алкена с хлором и, следовательно, ускоряет реакцию присоединения. В случае использования НС1, очевидно, имеет место нуклеофильное взаимодействие хлорида водорода с я-ком-плексом алкен — хлор, что приводит к образованию тримоле-кулярного комплекса, ионизация которого в лимитирующей стадии реакции ослабляет связи Н—С1 и С1—С1. Разделение зарядов способствует замыканию неплоскостного цикла в переходном состоянии. [c.53]

    Из формулы О — 5)/5 следует, что чем выше будет растворимость образующегося осадка и чем ниже концентрация осаждаемого веш ества, тем меньше будет относительное пересыщение, тем ченьшее число первичных кристаллов будет возникать и тем круптее они будут. Таким образом, для получения крупнокристаллических осадков необходимо в процессе осаждения повышать растворимость осадка и понижать концентрации осаждаемого и осаждающего ионов. Существует ряд способов понижения концентрации реагирующих ионов при формировании осадков. Самым простым из них является разбавление растворов перед осаждением и медленное (по каплям) при постоянном перемешивании прибавление раствора осадителя к исследуемому раствору (перемешивание нужно для того, чтобы в отдельных местах раствора не повышалась концентрация осадителя, т. е. не возникало так называемое местное пересыщение). Очень эффективным способом понижения концентрации осаждаемого иона является связывание его в комплексное соединение средней прочности. В этом случае достаточно низкая концентрация осаждаемого иона в растворе создается за счет частичной ионизации комплексного соединения. При добавлении иона-осадителя из-за образования малорастворимого соединения равновесие ионизации комплекса будет сдвигаться, но концентрация осаждаемого иона все время будет оставаться низкой. Например, если связать Со2+ в комплексное [c.101]

    Затем образуется следующая связь. На основе этого и других кинетических и стериохимических данных Робертс и Кимбалл [80] предположили, что первая стадия реакции заключается в образовании комплекса между олефином и Вгз, медленная ионизация которого лимитирует скорость реакции [c.500]

    При больших концентрациях галогена (> 0,02 М) в уксусной кислоте Уокер и Робертсон [86] нашли, что бромирование идет по суммарному третьему порядку и второму порядку по Вгг- В таком плохо ионизирующем растворителе это можно рассматривать как результат катализированной Вг2 ионизации комплекса олефин — Вгд [стадия 3, уравнение (XVI.6.3)], ведущей к образованию более стабильного Вг и циклического бромоние-вого комплекса. Ввиду трудностей, обусловленных солевым эффектом, в таких растворителях с низкими диэлектрическими проницаемостями необходимо подходить к интерпретации полученных ими данных с большой осторожностью. [c.501]

    Промежуточные механизмы. В последние годы накопились данные, свидетельствующие, что реакции замош ения, идуш ие через стадию ионизации и бимолекулярного замещения, представляют собой лишь крайние случаи всего комплекса реакции замещения [290, 316]. Следовательно, оба механизма, рассмотренных ь этой главе, являются лишь сравнительно редкими случаями и, вероятно, существуют другие реакции Фриделя-Крафтса, в которых количество возникающих и исчезающих связей в переходном состоянии колеблется в широких пределах. Из-за отсутствия данных по этому вопросу обсуждение его должно быть отложено. [c.441]

    Джиллеспай и Миллен [8] полагают, что реакция серной кислоты с ароматическими соединениями имеет важное значение в реакции нитрования. По-видимому, все растворимые в серной кислоте ароматические соединения образуют с серной кислотой при помощи водородной связи комплексы, которые могут подвергаться ионизации с образованием иона бисульфата и сопряженного основания. Положительное поле, возникающее в результате образования водородной связи, будет деактивировать кольцо и тормозить реакцию нитрования. Появление свободного заряда на сопряженном основании должно способствовать дальнейшей деактивации кольца. Таким образом, по мере увеличения концентрации кислоты активность ароматического соединения должна снижаться. Очень сильное воздействие на активирующий эффект ароматического соединения оказывает повышение кислотности вследствие возрастания ионизации азотной кислоты, приводящей к образованию ионов нитрония. Ионизация азотной кислоты фактически доходит до конца в 90 %-ной серной кислоте таким образом, следовало бы ожидать, что дальнейшее увеличение концентрации серной кислоты должно было бы повести к снижению скорости нитрования. [c.560]

    Известно, что энергия связи двух углеродных атомов в молекуле (62,8 ккал моль) значительно ниже энергии связи атома углерода с атомом водорода (85,6 ккал/моль). Исходя из этого, многие авторы (Цезарь и Френсис [4], Мак-Алистер с сотр. [5], Горин с сотр. [6] и др.) постулируют, что при контакте изопарафино-вого углеводорода с катализатором (или его комплексом с олефинами) происходит преимущественно ионизация молекулы этого углеводорода с разрывом связи между углеродными атомами. [c.10]

    Во втором случае при избытке ароматического компонента ионизация этилгалогенида происходит незначительно так как имеет место эффект растворителя. Этилгалогенид образует в этом случае неионизированный комплекс с катализатором и реа- [c.78]

    Молекулярный ион диссоциирует через состояние активированного комплекса, распад которого идет преимущественно в направлении образования стабильных продуктов. Ионизация молекул протекает быстро (за 10- с), а распад — сравнительно длительный акт продолжительностью 10 —10 с. За этот промежуток времени избыточная энергия, полученная ионизированной молекулой от электрона (сверх потенциала ионизации), перераспределяется по вращательным, кoлeбaтeJ[ьным и электронным состояниям. Если в молекуле имеется система, благоприятствующая передаче возбуждения, например система сопряженных связей, то избыточная энергия успевает равномерно распределиться по всей молекуле, и степень диссоциации подобных соединений оказывается сравнительно небольшой. При отсутствии подобной системы избыточная энергия не усиевасп иерерасиределиться по всему молекулярному иону, на одной и наиболее слабых связей [c.93]

    Алкилнрование по Фриделю — Крафтсу протекает также в присутствии кислот Льюиса в качестве катализаторов, которые образуют с алкилгалогенидами сначала по/1яризованные комплексы и в пределе в результате ионизации карбкатион  [c.151]

    Образующийся комплекс разлагается, и сероводород регенерируется. При образовании хемосорбированного катализатора Ре(Н5 )адс на поверхности металла прочная связь атомов железа с серой приводит к ослаблению связи между атомами металла, что и облегчает их ионизацию. К этому же приводит снижение приэлектродной концентрации ионов двухвалентного железа в результате в заимодействия их с сульфидами по реакции Ре ++ + Н5 ->-Ре5 + Н+. При этом происходит сдвиг электродного лотенциала железа в отрицательную сторону, что ведет к увеличению скорости анодного процесса коррозии, Механизм действия сероводорода на катодную реакцию имеет вид  [c.17]

    Основной примесью, от которой при, переработке фракций отделяют пирен, является флуорантен. Потенциал ионизации пирена (7,5 эВ) ниже, чем у флуорантена (7,83 зВ). На этом основании пирен можно селективно отделить в виде комплекса с пиромеллитовым диангидридом или с более дешевой и доступной лг-нитробензойной кислотой [13]. Принципиальная схема такого процесса представлена на рис. 81. [c.314]

    Увеличение участка пол.исопряжения приводит к уменьшению потенциала ионизации, в результате возникает возможность образования комплексов с электроноакцепторными веществами, например с галогенанилами, у которых имеются электронные вакансии. [c.284]

    К электростатическим взаимодействиям, обнаруженным в ас-фальтеновом ассоциате, относятся 1) ориентационное — между фрагментами, содержащими диполи (гетероатомы) 2) деформационное,— между полярными фрагментами и неполярными, но поляризующимися в поле диполя (наведенный диполь) 3) комплексы с переносом заряда, возникновение которых энергетически выгодно в том случае, если разность потенциала ионизации донора и сродства к электрону акцептора меньше энергии кулоиовского взаимодействия. Электростатические взаимодействия также относятся к близкодействующим силам, энергия которых обратно пропорциональна шестой степени расстояния между молекулами [287]. [c.287]

    Реакции переноса электрона. Реакции переноса электрона, являясь простейщим типом химического процесса, весьма распространены в фотохимии. Перенос электрона, происходящий при взаимодействии возбужденных молекул с донорами или акцепторами электрона, связан с тем, что при возбуждении молекул уменьщаетсч их потенциал ионизации и возрастает сродство к электрону. Такое взаимодействие возбужденных молекул с донорами и акцепторами электрона приводит к различным химическим и физическим процессам. В малополярных растворителях часто наблюдается образование возбужденных комплексов переноса заряда — эксиплексов. В полярных растворителях, где сольватация понижает энергию эксиплексов, реакция их образования становится необратимой и образуются иоп-радикальпые пары и свободные ион-радикалы. Образование эксиплексов и ион-радикалов может быть представлено следующей схемой  [c.176]

    Квантово-химические расчеты показали, что образование координационной связи с участием неподеленной электронной пары атома азота аминогруппы является маловероятным. Кроме того, в случаях, когда в молекуле нитрила имеется несолько нтрильных групп (тетра-(Р-цианэтил)этилендиамин, диэтаноламинопропионитрил), наиболее устойчивыми являются комплексы, в которых все нитрильные атомы азота участвуют в координации. Расчеты позволили установить геометрию молекул, вычислить теплоты образования, дипольные моменты, потенциалы ионизации, рассчитать длины и порядки связей, валентные углы. Некоторые результаты расчетов приведены в табл. 1. [c.60]


Смотреть страницы где упоминается термин Комплексы ионизация: [c.190]    [c.205]    [c.502]    [c.441]    [c.715]    [c.142]    [c.619]    [c.74]    [c.77]    [c.215]    [c.58]    [c.220]    [c.137]    [c.178]    [c.96]   
Курс качественного химического полумикроанализа 1973 (1973) -- [ c.177 , c.280 ]




ПОИСК







© 2025 chem21.info Реклама на сайте