Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозия металлов растрескивание

    С повышением температуры и увеличением концеитрации среды коррозионное растрескивание обычно увеличивается. В зависимости от характера агрессивной среды может изменяться и характер растрескивания металла. Отмечены случаи, когда ко[)розионное растрескивание переходит в равномерную коррозию и растрескивание прекращается, Прн интенсивной общей коррозии металла растрескивание обычно не происходит. [c.102]


    См. также Металлотермия, Металлургия проводимость, см. Металлическая проводимость простые вещества 3/96 радиоактивные 3/93, 97 4/360 разрушение, см. Биокоррозия, Коррозия металлов. Растрескивание металлов раскисление 2/546, 625, 1010, 1202, [c.646]

    Установлено, что вредное влияние на коррозионное поведение металлов оказывают растягивающие напряжения. Постоянные растягивающие напряжения (внешние или внутренние) увеличивают скорость общей коррозии металла примерно пропорционально их величине (рис. 230) и часто ухудшают распределение коррозии (что более опасно), переводя ее из общей в местную, вызывая в частности коррозионное растрескивание. [c.333]

    К опасным видам местной электрохимической коррозии металлов относятся контактная, щелевая, точечная (питтинговая), межкристаллитная и коррозионное растрескивание. Контактная коррозия металлов уже рассмотрена нами во внешних факторах электрохимической коррозии металлов, а коррозионное растрескивание — во внутренних факторах электрохимической коррозии. Остальные виды местной электрохимической коррозии тоже уже упоминались в тексте, но требуют более подробного описания. [c.414]

    Коррозионные испытания металлов в напряженном состоянии. Как известно, коррозия металла в напряженном состоянии носит специфический характер и отличается как от чисто механического, так и от чисто электрохимического его разрушения. Характерным видом разрушения металла при постоянных растягивающих напряжениях является коррозионное растрескивание металла. Разработано много методов испытаний на устойчивость [c.347]

    В условиях эксплуатации нефтеперерабатывающих заводов -имеют место различные формы коррозионного разрушения металла точечная (питтинговая), щелевая, межкристаллитная коррозия, коррозионное растрескивание, усталостная коррозия, коррозия при трении, эрозия. Для относительной оценки коррозионного поведения металлов используется десятибалльная шкала коррозионной устойчивости табл. 3.85). [c.341]

    Изложены закономерности учения о коррозии металлов и основы технологии противокоррозионной защиты. Рассмотрены биогенная и почвенная коррозия, высокотемпературное окисление металлов, питтинговая и межкристаллитная коррозия, коррозионное растрескивание, влияние радиации и блуждающих токов. Охарактеризована стойкость основных групп металлических конструкционных материалов, в том числе новых сплавов, используемых в химической, атомной, энергетической и других отраслях промышленности. [c.4]


    Водород, циркулирующий в системе реакторного блока, вызывает межкристаллитную коррозию металла, сопровождающуюся снижением его прочности и увеличением хрупкости. Межкристаллитное растрескивание, образование раковин и вздутий в металле оборудования под действием водорода усиливаются при повышении температуры и давления в системе. [c.300]

    В [5] отмечается, что вследствие диффузии водорода в металл происходит разрыв некогерентных границ матрица-включение с образованием микротрещин, давление водорода в которых достигает 200-400 МПа, что сопоставимо с пределом текучести низкоуглеродистых конструкционных сталей. Под воздействием внутреннего давления происходит рост и слияние микротрещин с последующим разрушением металла. Растрескивание стали начинается при концентрации водорода 0,1-10 ppm и протекает при температуре от минус 100 до 100 С. В [4, 5] исследовано влияние парциального давления сероводорода на скорость коррозии и водородное расслоение стали. Последнее активно начинается при парциальном давлении серо- [c.12]

    Основное количество повреждений (247) наблюдалось в течение первых шести лет эксплуатации. В 1971-1973 гг. оно непрерывно возрастало. В следующие три года несколько снизилось, но все же находилось на недопустимо высоком уровне. Затем количество повреждений снизилось до минимума и держалось на таком уровне до 1995 г. В последние годы начали поступать сведения об одиночных коррозионных повреждениях трубопровода, причина возникновения которых требует выяснения. Большинство повреждений имело вид нераскрывшихся коррозионных трещин различной длины (20-150 мм) на продольных заводских сварных швах поблизости от кольцевых монтажных швов или непосредственно на них. Известно, что с момента ввода в эксплуатацию по апрель 1972 г. по трубопроводу Оренбург-Заинск транспортировался неингибированный газ с содержанием НгЗ до 2,5% об., который мог вызвать сероводородную коррозию металла, проявляющуюся в разных формах — от общей равномерной коррозии до водородного расслоения и сероводородного растрескивания. [c.62]

    Содержание сероводорода в природном газе на разных месторождениях составляет от сотых долей процента до 25% об., а двуокиси углерода — от долей процента до 15% об. Как правило, в газе одновременно присутствуют и сероводород, и двуокись углерода. На АГКМ общее содержание в газе кислых компонентов достигает 40% об., а на месторождениях Северного Кавказа и Восточной Украины сероводород в большинстве случаев вообще отсутствует. В связи с этим характер коррозионных разрушений металла оборудования, используемого на различных месторождениях, имеет существенные отличия. В случае наличия в природном газе двуокиси углерода наблюдается общая коррозия металла, а в присутствии сероводорода — его сероводородное растрескивание. [c.216]

    Ингибиторная защита предусматривает обеспечение надежной работы всех элементов оборудования скважин, шлейфовых газопроводов, сепараторов, теплообменников и газопроводов большого диаметра. Применение ингибиторов должно приводить к снижению скорости общей коррозии металла до величин, не представляющих какой-либо опасности для технологического оборудования, а в случае сероводородной коррозии — к резкому уменьшению наводороживания металла и к потере им пластических свойств, то есть, в конечном итоге, к снижению опасности сероводородного растрескивания. [c.221]

    Как видно, для всех металлов, за исключением элементов 1А и ПА групп (кроме Ве) таблицы Д. И. Менделеева, удовлетворяется условие сплошности. Однако существенное замедление скорости окисления металлов при выполнении условия (17) наблюдается для металлов, у которых рост оксидной пленки в основном обусловлен диффузией кислорода к поверхности металла. При Уо Ум, значительное увеличение объема оксида приводит к появлению больших напряжений в оксиде и на границе оксид—металл, что может быть причиной растрескивания пленки, и, следовательно, увеличения скорости коррозии металла. В качестве верхней границы отношения объемов, для которых обеспечивается достаточно хорошие защитные свойства пленки, обычно принимают величину Уо/Ум < 2,5. Отношения объемов оксида и металла представлены ниже [9, 10]  [c.18]

    Многие алюминиевые сплавы (особенно содержащие медь, цинк и магний) менее устойчивы к действию коррозии, чем чистый алюминий. Кроме того, они подвержены таким особым видам коррозии, как растрескивание под действием внутренних напряжений и межкристаллитная коррозия. Но поскольку эти сплавы часто являются катодными (имеют более положительный потенциал по отношению к чистому алюминию), то они могут получить защитное действие при нанесении покрытия из чистого металла. Комбинированное покрытие также обладает большей природной коррозионной стойкостью, чем покрытие из чистого алюминия, сохраняя большую механическую прочность основного сплава. Как плакировка, так и напыление покрытия этого типа обеспечивают долгий срок службы деталей из алюминиевых сплавов, подвергаемых атмосферным воздействиям или эксплуатируемых в питьевой воде. [c.109]


    Сероводород - кислота, вызывающая химическую и электрохимическую (в ирисутствии воды) коррозию металлов. При определенных условиях протекает сульфидное растрескивание металлов. Вместе с тем сероводород является сырьем для ироизводства так называемой газовой серы. [c.231]

    Углекислый газ — своеобразный коррозионный агент, свойства которого во многом зависят от других агрессивных компонентов, например от О2, H2S и растворенных солей, главным образом бикарбонатных. За счет образования защитной пленки карбоната кальция при равной концентрации диоксида углерода скорость коррозии в мягких водах значительно выше, чем в жестких. Сероводород, растворенный в насыщенной СО2 воде, оказывает двойное влияние на коррозию стали. В ряде случаев он замедляет коррозию металла за счет образования на его поверхности пассивной пленки полисульфидов (так называемый фазовый слой маки-навита), обладающей незначительными защитными свойствами. При парциальных давлениях HjS порядка 140 Па наблюдается подповерхностная коррозия — образование водородных пузырьков под поверхностью металла. При росте парциального давления сероводорода отмечалось коррозионное растрескивание металла вследствие его наводороживания [1]. [c.319]

    При осмотре образцов определяют внешний вид покрытия — визуально с помощью лупы 4(Х) цвет (см. вариант 2 работы N 59) блеск (см. вариант 1 работы 60) меление (см. вариант 2 работы N 61) наличие пузырей (см. работу 75) и растрескивания (см. работу N 76) коррозию металла под пленкой (визуально). [c.186]

    Коррозионное растрескивание и коррозионно-усталостное разрушение металлов следует отличать от межкристаллитной коррозии металлов, протекающей без наличия механических напряжений в металле. Разрушения металлов типа коррозионного растрескивания и коррозионной усталости имеют много общего, поскольку характерным для обоих явлений является образование в металле трещин и отсутствие на его поверхности значительных раз.ъеданий. Только изредка наблюдаются небольшие местные разъедания. Несмотря па большое количество исследований, механизм трещинообразования и развития трещин еще недостаточно ясен. Однако в большинстве исследований (Ю. Р. Эванс, Г. В. Акимов, Н. Д. Томашов, А. В. Рябченков, Е. М. Зарецкий, В. В. Герасимов и др.) подтверждается электрохимический характер коррозии. Наряду с электрохимическим фактором па коррозионный процесс оказывают влияние и факторы механического и адсорбционного снижения прочности металла. В зависимости от преобладающего действия того или иного фактора характер коррозионного разрушения может изменяться. [c.107]

    В некоторых случаях титан склонен к межкристаллитной коррозии. Так, наблюдалось межкристаллитное разрушение сварных соединений титана в сернокислом растворе (12—187о серной кислоты), насыщенном сернистым газом с примесями мышьяка, двуокиси селена и окиси железа, — металл шва и зона термического влияния сварного соединения подвергались межкристаллитной коррозии. Межкристаллитное растрескивание титана наблюдалось в красной дымящей азотной кислоте, растворах брома в метиловом спирте и в их парах. Имеются сведения о коррозионном растрескивании титана в расплавленном кадмии, в хлорированных углеводородах, а также в воздушной среде при 260° С, когда на поверхности титана имелись сухие кристаллы хлористого натрия. [c.278]

    Постоянные растягивающие напряжения ( внешние и внутренние) yвeлviчивaют скорость общей коррозии металлов и могут вн8-вать коррозионное растрескивание, характеризующееся обравова-нием трещин в плоскостях, нормальных к направлению растягивающих напряжений. [c.40]

    Расчеты коррозионно-механической стойкости и долговечности /2/, механокоррозионной прочности /3/ и механохимической повреждаемости металла /4/ позволяют, достаточно точно оценить ресурс большинства аппаратов, трубопроводов и других металлических конструкций и определить пути повышения их работоспособности в условиях о6ш ей коррозии, коррозионного растрескивания и коррозионной устаюсти, независимо, механический 1[ли коррозионный фактор определяет скорость и характер их разрушения. [c.300]

    Обработку металлов в процессе изготовления аппаратуры следует проводить с учетом явлений наклепа, который возникает в результате пластических де р-маций и влечет за собой изменение механических свойств. Для углеродист <х сталей явление наклепа обнаруживается при температурах ниже 650— 700 °С, особенно опасен интервал 200—300 °С. Наклепанный металл обладает пониженными пластическими свойствами и повышенной прочностью, твердостью. С углеродистой стали наклеп снимается нагревом при 650—700 G. Опасность наклепа заключается также в том, что в наклепанном металле более активно развиваются процессы старения, коррозии, коррозионного растрескивания. [c.175]

    Большинство металлов подвержено местному виду коррозионного разрушения межкристаллитной коррозии, питтингу, избирательной коррозии, коррозионным растрескиванию или усталости и др. Считается, что характер коррозионного разрушения зависит от взаимного раоположения анодных и катодных участков в процессе коррозии. При постоянном их расположении коррозионные разрушения имеют ярко выраженный местный характер. [c.8]

    Исследованиями ЮЖНИИГИПРОГАЗа установлено, что в условиях минимального коррозионного воздействия эксплуатируются межблочные коммуникации емкость Е-01-выходной коллектор УКПГ при эффективной низкотемпературной сепарации. Все остальные линии эксплуатируются в присутствии электролита. Согласно рис. 3, все межблочные коммуникации, линии обвязки и шлейфы скважин-доноров подвержены сероводородному коррозионному растрескиванию. Прогнозируемая скорость общей коррозии составляет 0,1-0,3 мм/год. В диапазоне рабочих температур скорость общей коррозии металла относительно невысока, а его стойкость к сероводородному растрескиванию также является низкой (рис. 3). [c.13]

    При конструировании трубчатой конденсационно-холодильной аппаратурь необходимо учитывать, что при развальцовке латунных трубок в них могут появиться значительные остаточные напряжения. Если при этом в охлаждающей воде будут присутствовать элементы, вызывающие коррозию металла, то может произойти растрескивание концов трубок. Таким образом, необходимо следить не только за состоянием металла трубок, но и за составом оборотной воды (среды), вступающей в контакт с металлом трубок. [c.151]

    Интенсивной язвенной коррозии также подвержены участки магистральных газопроводов непосредственно на выходе из компрессорных станций (на КС Тулей были обнаружены язвы, достигающие глубины до 80 % от толщины стенки трубы при наличии катодной защиты промплощадки). Имеющиеся язвы свидетельствуют о протекании коррозионных процессов в очагах КР, несмотря на наличие системы катодной защиты внешней поверхности труб. Часть очагов язвенной коррозии может не содержать коррозионных трещин. Очаги язвенной коррозии и растрескивания часто располагаются в одном коридоре вдоль нижней образующей трубы под отслоившейся изоляцией (рис. 1.18). В некоторых случаях зарождение трещин можно связать с имеющимися коррозионными язвами на поверхности металла. В связи с тем, что в очагах разрушения часто присутствуют язвы, можно предположить о наличии общего электрохимического процесса, приводящего к образованию коррозионных язв и трещин. Следует отметить, что язвб1 даже при одинаковой глубине с коррозионными трещинами менее опасны по сравнению с последними. Это связано с меньшей их протяженностью и, соответственно, меньшей вероятностью образования магистральной трещины. [c.29]

    В расчетах на прочность технологической аппаратуры конструктору часто приходится учитывать общую равномерную по поверхности коррозию металлов и сплавов, для чего необходимо знать проницаемость материала в мм/год при заданных рабочих условиях агрессивной среды (концентрация, температура, давление). Она учитывается при выборе величины прибавки на коррозию к рассчитанной толщине стенки аппарата. В ряде случаев при конструировании технологической аппаратуры необходимо учитывать также и другие виды коррозионного разрушения материалов. Например, в химических аппаратах, выполненных из кислотостойкой стали и находящихся под постоянным повышенным давлением, при совместном действии коррозионной среды и растягивающих напряжений в ряде случаев наблюдается коррозионное растрескивание металла, происходящее обычно внезапно без видимых изменений материала, Это явление не имеет места при наличии в металле напряжений сжатия. Кроме того, коррозионное растрескивание происходит в небольшом количестве агрессивных сред и зависит от величины давления и температуры, Известно, что ускоренное растрескивание аппаратуры из кислостойких сталей, находящейся под постоянно действующей нафузкой, имеет место в растворах Na I, Mg l,, 7,т)С , Ь1С1, Н 8, морской воде и т,д. Латуни обнаруживают склонность к коррозионному растрескиванию в среде аммиака. [c.9]

    Как и язвенная коррозия, коррозионное растрескивание под напряжением происходит преимущественно на пассивированных металлах в пределах области критических потенциалов. На уровень предельных потенциалов кроме специфических свойств материалов и сред оказывают влияние также вид и величина механических нагрузок. Съем металла (потеря массы) при коррозионном растрескивании под напряжением может быть чрезвычайно малым или даже равным нулю. Разрушение может развиваться вдоль границ зерен (межкристаллитно) или через зерна (транскристаллитно). [c.71]

    Учет коррозионного износа стенок газопроводов, транспортирующих среды, содержащие сероводород, обычно производили путем увеличения толщины стенки на 3 мм для неосушенных сред и на 2 мм для осушенных по сравнению с номинальными толщинами для неагрессивных сред. Однако эти величины не являются обоснованными, так как базируются на понятии максимальная допустимая скорость коррозии в предположении постоянства этой величины во времени, что не соответствует реальным условиям эксплуатации. Действительно, несущая способность стенки трубопровода, подвергаемой воздействию общей коррозии (коррозионное растрескивание в присутствии сероводорода исключается соответствующим выбором состава и термообработки стали и определяется достижением предельного допускаемого значения напряжения, которое для газопромысловых трубопроводов в зависимости от кате гор ийности трубопровода составляет 0,3— 0,5а,г), определяется действующими напряжениями. Динамика изменения напряженного состояния в стенке трубопровода зависит от изменения как силовых нагрузок (давления), так и толщины стенки вследствие ее коррозионного износа. В свою очередь изменение механических напряжений в стенке вызывает изменение скорости коррозионного износа. Неучет реальной динамики этих процессов при назначении толщины стенки может привести либо к занижению запаса толщины на коррозионный износ, либо к неоправданному ее завышению и перерасходу металла. [c.243]

    Сложившиеся представления о механизме и кинетике атмосферной коррозии основываются на современных знаниях в области физической химии поверхностных явлений на металлах (адсорбция, окисление), физики и физической химии атмосферы, а также техническоГ климатологии. Поэтому современная теория атмосферной коррозии, включающая в себя представления о природе атомно-молекулярных процессов, протекающих в граничном слое металл — среда, и далеко не полные знания о макроскопических процессах, развивающихся в приземном слое атмосферы, находится еще на уровне качественного описания разны по своей природе явлений, и имеются большие трудности в количественной интерпретации многообразных эффектов коррозии металлов, наблюдающихся в различных климатических зонах. Вместе с тем для атмосферной коррозии характерны все виды, присущие коррозии металлов в других электролитических средах равномерная, язвенная, питтин-говая, межкристаллитная, расслаивающая, коррозионное растрескивание и т. д. Поэтому в настоящей брошюре в весьма общем виде рассмотрены некоторые аспекты атмосферной коррозии металлов с учетом современного уровня знаний в упомянутых областях науки. [c.4]

    Проведен анализ аварийности и причин отказов сварных соединений и основного металла труб нефте- и нефтепродуктопроводов. Установлено, что основными причинами отказов являются несовершенства проектных решений, заводской брак труб, брак строительно-монтажных работ, общая и язвенная коррозия, коррозионное растрескивание и коррозионная усталость металла нефтепроводов, нарушения правил эксплуатации, включающие ошибки обслу- [c.7]

    Коррозионный износ внутренней поверхности змеевиков сопровождается эрозионным износом, особенно в местах турбу-лизации потоков. Эрозия поверхности труб движущейся средой приводит к разрушению защитных пленок окислов и ускорению коррозии металла. Наиболее интенсивному коррозионноэрозионному износу подвержены концы печных труб и калачи. Частые остановки печи приводят также к разрушению защитных пленок окислов из-за их растрескивания при нагреве-ох-лаждении металла. [c.80]

    Органогалогениды олова могут быть использованы как катализаторы для получения эфиров фосфорной кислоты и для полимеризации лактонов с образованием бесцветных полиэфиров. Различные галогенпроизводные дибутилолова предложены в качестве катализаторов отверждения кремнийорганических эластомеров, как средства, предотвращаюпще растрескивание полистирола, как ингибиторы коррозии металлов в среде кремнийорганических полимеров. [c.381]

    Использование кислых технологических сред, а также применение кислот для различного рода технологических операций приводят к интенсивной коррозии металлического оборудования, трубопроводов, емкостей, машин, агрегатов, арматуры и т. п. Так, например, интенсивной коррозии подвергается оборудование нефтеперерабатывающих заводов, где в ходе технологического процесса переработки нефти образуются соляная, сероводородная, уксусная, нафтерювая кислоты. В нефтегазодобывающей промышленности коррозии подвержены оборудование скважин, насосно-компрессорные трубы, установки сбора и перегонки нефти и газа из-за наличия сопутствующих кислых газов сероводорода, углекислоты. В химической промышленности коррозионному разрушению подвергаются емкости для хранения кислот, реакторы, перекачивающие насосы (например, крыльчатки насосов, перекачивающих катализат в производстве уксусного альдегида, выходят из строя через 2—3 сут). Химическая обработка металлоизделий, проката, труб, проволоки в кислотах и кислых средах вызывает интенсивное растворение металла и значительные безвозвратные потери его. Считают, что при травлении окалины с поверхности стальных горячекатанных полос в кислотах теряется от 2 до 4 % протравливаемой стали, что при годовом производстве в 150 млн. т составляет 3—6 млн. т металла. Еще более опасны сопутствующие равномерной коррозии процессы локальной коррозии, наводороживания, коррозионного растрескивания, усталостного разрушения сталей. Так, по данным обследования химических заводов Японии, в 1979 г. более 50 % оборудования, разрушенного под воздействием кислых агрессивными сред, приходилось на локальную коррозию, коррозионное растрескивание, коррозионную усталость и лишь 33 % — на общую коррозию. [c.6]

    Обычно при разработке ингибиторов или при их иприменении в кислых средах (травление, перевозка кислот, защита химической аппаратуры и т. п.) учитывают лишь потерю массы металла вследствие развития процессов общей равномерной коррозии. Однако практика показывает, что такая оценка явно недостаточна, так как в большинстве случаев оборудование, механизмы, аппараты работают не только в. условиях воздействия агрессивных кислых сред, но и под влиянием различного рода механических напряжений. Механические напряжения Могут усиливать равномерную коррозию металла в кислой среде, а также приводить к локальным коррозионным поражениям, скорость которых в десятки Тысячи раз выше скорости равномерной коррозии. Совместное действие среды Механического фактора вызывает коррозионно-механическое разрушение, которое выражается в усилении общей коррозии, возникновении коррозионного растрескивания 11 коррозионной усталости. [c.61]

    Метод оцеики антикоррозионных свойств покрытий (A3) при испытании в жидких агрессивных средах (воде, кислотах, щелочах, растворах солей, органических соединениях) заключается в определении следующих видов разрушения покрытий пузырей (П), отслаивания пленкн от подложки (С), сморщивания (СМ), растрескивания (Р), растворения пленки (Т), коррозии металла (К) с учетом относительных оценок соответствукяцих видов разрушения (П, С, СМ, Р, К) и относительной оценки по размеруразрушения (ЛР). [c.176]

    Образцы покрытий, помещенные в кассеты, располагают во виутреи-ней части барабана и включают вентиль подачи воды дпя охлаждения барабана, Прочии ют иглой отверстие в коллекторе узла орошения и подготавливают к пуску вентиль подачи дистиллированной воды для орошения образцов. Подготовив аппарат к работе, плотио закрывают дверцы, открывают вентиль подачи воды и включают аппарат в сеть. Испытание продолжать в течение 240 ч. Через 24, 72, 120 и 240 ч испытаний и выдержки образцов при комнатной температуре в течение 2 ч осматривают покрытия, фиксируя внешний вид с использованием пупы 4 (X) блеск (см. вариант 1 работы N 60) наличие пузырей (см. работу 75), растрескивания (см. работу № 76), меления (см. работу № 62) коррозию металла проверяют после 240 ч испытаний, сняв покрытие с подложки иа участке размером не меиее 1 см . [c.180]


Библиография для Коррозия металлов растрескивание: [c.333]   
Смотреть страницы где упоминается термин Коррозия металлов растрескивание: [c.114]    [c.15]    [c.13]    [c.85]    [c.7]    [c.73]    [c.38]    [c.35]    [c.46]    [c.95]    [c.194]   
Водный режим и химический контроль на ТЭС Издание 2 (1985) -- [ c.26 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозия металлов

Коррозия металлов коррозии

Металлы растрескивание



© 2024 chem21.info Реклама на сайте