Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Калий носители

    Влияние концентрации Ст на окисление америция сказывается в меньшей степени, если окисление проводить до пятивалентного состояния в растворе карбоната калия. Отделение основано на образовании в условиях окисления нерастворимого двойного карбоната америция (V) и калия. Носителем для Am(V) служит U(VI) [477]. Кюрий остается в растворе. [c.365]

    Сами щелочные металлы так же, как их гидриды, обладают высокой активностью и поэтому часто предлагаются как катализаторы,, причем на самых различных носителях. В табл. 21 дается обзор-таких катализаторов особенно перспективной кажется комбинация натрия с карбонатом калия в качестве носителя. [c.223]


    В первом методе применяют в качестве газа-носителя двуокись углерода, которую после колонки направляют в бюретку с раствором 40%-ного едкого кали или в цилиндр, наполненный аскаритом оба эти вещества полностью поглощают СО2, и объем выходящих из колонки углеводородов может быть измерен. [c.252]

    Наиболее часто используемым элементом является никель — активный компонент подавляющего большинства катализаторов конверсии углеводородного сырья. На втором месте находится алюминий, который (в составе окиси алюминия) входит в носители, наполнители, промоторы. Значительно реже встречается магний (в составе окиси магния). Еще реже в состав катализатора вводятся кальций, натрий, калий, уран, барий. В составе сырья относительно редко встречается кремний, титан, цирконий, хром, марганец. [c.17]

    Промотор можно вводить в носитель до и после пропитки его активными компонентами. Так, окись калия вводят в катализатор (в виде 1%-ного раствора карбоната калия), а затем носитель пропитывают раствором веществ, содержаш>1Х никель и уран. В другом случае катализатор получают погружением глинозема в расплав нитратов никеля и урана с последующим прокаливанием его до образования соответствующих окислов. После этого его выдерживают в растворе карбоната калия на протяжении 30 мин. [c.27]

    Среди этих катализаторов преобладают смешанные, но довольно часто встречаются и нанесенные контакты. В качестве носителя чаще всего используют окись алюминия с различными добавками, значительно реже — окись магния. Окись алюминия в количественном отношении является основным компонентом таких катализаторов. Окислы щелочноземельных металлов (кальция и магния) входят в количестве более 5% в состав почти всех катализаторов рассматриваемого типа. Окислы щелочных металлов (калия, натрия) вводятся в катализатор в количестве до 5% (предпочтительно— менее 0,5%). Входящие в состав некоторых катализаторов окислы железа кремния следует рассматривать как загрязнения, сопутствующие вводимым компонентам. [c.49]

    Образование сложных эфиров при реакции бензилхлорида с твердыми солями в толуоле, катализируемой третичными аминами или четвертичными аммониевыми солями, также проходит в органической фазе и имеет первый порядок по субстрату и катализатору [94]. Кинетика замещения 81—83] и этери-фикации с использованием краун-эфиров в качестве МФК в системах жидкость/жидкость [55, 81—83] и твердая фаза/жидкость [73] также подтверждает общую схему механизма МФК. Реакцию между твердым фенолятом калия и алкилгалогенида-ми в толуоле могут катализировать даже линейные полиэфиры, связанные с полимерным носителем, и кинетика реакции оказывается точно такой же, как и с растворенным катализатором. Эти наблюдения указывают на возможность тесного контакта между смолой-носителем катализатора и твердой солью [74]. [c.54]


    К числу других советских катализаторов относится ИК-1, получаемый пропиткой тонкоизмельченного носителя раствором смеси сульфата ванадия и бисульфата калия. Используется также высокотемпературный катализатор ИК-2, низкотемпературный ИК-3, термостойкий ТС и катализатор для работы в кипящем слое КС. В табл. 4 сопоставлены описанные в литературе свойства советских катализаторов. [c.254]

    Ванадиевый катализатор [29—321 готовят методом пропитки солями ванадия и калия алюмосиликатного носителя, в качестве которого выбраны отходы промышленного катализатора крекинга с размерами частиц 0,5—1 мм или 1—2 мм, в зависимости от условий эксплуатации катализатора в производстве серной кислоты. [c.146]

    Феррицианид калия. Носитель опрыскивают 0,44%-ным раствором КзРе(СН)й в 0,2 М фосфатном буфере (pH 7,8) или, если хроматографию проводили в кислом растворителе, в 0,2 М Na2HP04 (pH 8,3). Окраску можно усилить обработкой парами аммиака. Адреналин дает сначала розовое пятно, переходящее затем в желтое, норадреналин сначала бледно-лиловое, затем коричневое, а допамин бледно-лиловое пятно. Предел обнаружения 2 мкг. Меньшие количества можно определять по зеленой флуоресценции в УФ-свете. [c.387]

    Проведенное исследование подтвердило, что основная причина термической инактивации катализаторов, промотированных калием, заключается в связывании калия носителем и выделении в результате этого малоактивной фазы V2O5. [c.55]

    Термическая неустойчивость ванадиевых сернокислотных катализаторов, выражающаяся в инактивашии, может быть объяснена Еьхделением кристаллической фазы V2O5 в результате связывания калия носителем. [c.55]

    Ванадиевые катализаторы содержат 5—10% гОб и 5—10% К2О. Энергия активации в рабочем диапазоне температур 420— 530°С составляет в среднем около 90 кДж/моль. Температура зажигания 390—410°С. В условиях работы контактная масса представляет собой пористый носитель, внутренняя поверхность которого смочена плея сой раствора УгОз в расплаве пиросульфата калия. Носителями, как правило, служат высокопористые алюмосиликаты. Ванадиевую контактную массу выпускают в виде цилпид-рических гранул, таблеток, колец, шариков п др. Размеры гранул катализатора имеют большое значение для процесса катализа. Чтобы исключить внутридиффузионные торможения (см. разд. 5.3 и 5.5.2) при окислении промышленных газов с содержанием 50г 7—11 % в диапазопе температур 500—550°С размеры гранул катализатора не должны превышать 1 —1,5 мм. Однако при использовании мелкозернистых катализаторов создается большое гидравлическое сопротивление газовому потоку, проходящему через неподвижные (фильтрующие) слои катализатора. Это приводит к неоправданно высоким энергозатратам. Поэтому при проведепии процессов в фильтрующих слоях применяют катализаторы с размерами гранул 5—10 мм. При таких размерах для начальных и средних стадий окисления степень нспользования внутренней поверхности гранул (см. разд. 5.5.2) не превышает 30—50 %- [c.184]

    Диссоциация была изучена фотометрически по увеличению коицеитрации N63 при прохождении адиабатической ударной волны через смесь N204 в газе-носителе N3. Данный метод, как признают, является неточным, и в этой системе энергию активации (а следовательно, и частотный фактор) трудно измерить, но, по-видимому, можно ие сомневаться в том, что частотный фактор превышает величину сек 1. Эта реакция Показывает типичную зависимость от давления. Энтропия активации составляет около 10 кал моль-град, И это легко объяснить, если сопоставить указанную величину с полным изменением энтропии в реакции, составляющим около 45 кал моль -град (стандартные условия 25° С, давление 1 атм). Стандартное изменение энтропии, обусловленное поступательным движением, равно 32,4 кал моль-град, и на долю изменения, обусловлеи-ного вращением и колебанием, остается 12,6 кал моль-град. Последняя величина сопоставима с величиной энтропии активации 10 кал моль-град. Это указывает на то, что переходный комплекс подобен скорее свободно связанным молекулам N02, нежели молекуле N204. [c.232]

    Получение хлора окислением H I. В старом методе Дикона катализатором служила двуххлористая медь, осажденная на носителе (глине) в количестве около 1%. Реакцию вели в аппарате с неподвижным слоем при 480 °С. В последнее время проявился некоторый интерес к процессу с кипящим слоем. На заводе I. G. Oppau недавно стали применять в качестве катализатора сплав хлоридов калия и окиси железа при температуре слоя 455 С. [c.325]

    В качестве промоторов в смешанные катализаторы ввгдчт окислы щелочных металлов (калия и натрия). Для повышения стабильности катализатора в глиноземный носитель вводят 0,5—10 мас.%. окиси титана, что позволяет снизить содержание сажи в газе при конверсии высших углеводородов в 1,5—2 раза, увеличить степень конверсии бензина. Повышению активности катализатора способствует введение в него небольшого количества (1,3%) окиси марганца. На основе имеющихся данных нельзя сделать определенные выводы о сущности положительного влияния промоторов катализаторов. Невозможно с полной определенностью ответить на вопрос, являются ли применяемые промоторы модификаторами или промоторами. Нет пока возможности установить, ускоряют они собственно реакцию конверсии углеводородов или только газификацию образовавшегося в процессе углерода или лишь предотвращают образование последнего. [c.19]


    Катализатор состоит из окислов никеля, молибдена или продуктов их восстановления. В катализаторе содержится 5—20 мас.% никеля, гидравлическое связывающее (глиноземный цемент) в сочетании с активированной AI2O3 в качестве носителя и более 0,5 мас.% окиси калия или щелочноземельного металла. При получении катализатора 108 г AljOg HjO и 106,2 г (NH4)2 М0О4 перемешивают с небольшим количеством воды, суспендируют 250 мл воды и 40 мл водного [c.149]

    Катализатором служит никель с добавкой калия (для снижения коксообразования). Носителями катализатора являются окислы А1, М , и, а также кальсилит (КгО А12О3 2 5 02). Для повышения механической прочности в катализатор вводят Т Ог. Веществами, отравляющими катализатор, являются 8, С1, Вг, Аз, РЬ, V. Снижение активности катализатора наблюдается при адсорбции [c.163]

    Никель-урановый катализатор содержит (мас.%) 5— 30 никеля, окиси урана в виде изОв (иОэ), 0,01 — 0,5 калия или лития и носителя (окись алюминия или окись бария). Катализатор может также содержать алю-минатный цемент в качестве связующего. Катализатор получают пропиткой носителя водными растворами соответствующих нитратов с последующей пропиткой при температуре менее или равной 500° С. Конверсию нафты про- [c.173]

    Катализатор содержит3— 80% никеля (в пересчете на закись никеля), тугоплавкий носитель и соединения щелочных и щелочноземельных металлов более 0,5 (в пересчете на окись калия). Процесс протекает без отложения кокса на катализаторе [c.177]

    Для нанесения окиси ванадия необходимо выбирать абсолютно инактивный носитель, иначе значительная часть сырья окисляется до воды и СО2. Подходящим носителем для окиси ванадия является пемза. Описан также снликагелевый носитель, обработанный сульфатом калия. Одной фирмой разработан процесс окисления нафталина или ортео-ксилола в псевдокинящем слое катализатора [348]. Преимуществами процесса в псевдокипящем (флюидном) слое являются меньший расход воздуха и более эффективный отвод тепла из реакционной зоны. [c.590]

    Относительно природы веществ, являющихся носителями оптической активности, высказывались различные предположения. Ракузин и Маркуссон считали, что носителями оптической активности нефти являются нафтеновые кислоты. Однако опыт с русским цилиндровым маслом, которое обрабатывалось едким кали для удаления нафтеновых кислот, показал, что если угол вращения плоскости поляризации до обработки составлял 11,2°, то после обработки он стал 10,4°, т. е. произошло уменьшение только на 0,8°. Как видно, причина вовсе не в нафтеновых кислотах. Предполагали, что активными нефтями являются те из них, которые содержат серу. Однако опыты с удалением серы из нефти не оправдали предположения Альбрехта, что носителями оптической активности могут быть углеводороды, кипящие в узких пределах. [c.54]

    Чувствительность катализаторов к воздействию высоких температур связана с рядом различных явлений. Прежде всего повышение температуры размораживает дефекты решетки катализаторов (как полупроводниковых, так и металлических), приближая систему к равновесию. Такое изменение дефектного состояния решетки неизбежно приводит к изменению активности катализатора в большинстве случаев к ее понижению [47 ]. Далее, повышение температуры и приближение ее к температуре плавления материала вызывает значительное ускорение самодиффузии в твердом веществе и, как следствие этого, — яв.чение спекания, приводящее к уменьшению поверхности катализатора. Как указывалось ранее, это во многих случаях приводит к понижению активности катализатора. Примеров такого рода явлений описано очень много можно указать на работу Борескова с сотрудниками но катализатору парофазного гидролиза хлорбензола [48 ] и работу Битенаж по алюмосиликатным катализаторам [49]. Еще одним следствием повышения температуры может быть превращение каталитически активных соединений в неактивные. Например, при температуре выше 500° С в смешанном катализаторе окисления нафталина во фталевый ангидрид происходит взаимодействие сульфата калия с сульфатом ванадия и образуется каталитически неактивный ванадат калия. Кро е указанных явлений, при высоких температурах может происходить растрескивание или расплавление всей массы катализатора, или носителя. [c.199]

    Пень туннельная предназначена для сушки, прокалки и охлаждения высокотемпературного катализатора ИК-1 и ИК-2. Высокоактивные катализаторы получаются путем прокалки выеокодис-персного носителя (кремнезема) раствором сульфата ванадия и бисульфата калия. [c.205]

    Катализатор СВД (сульфованадиевый на диатомитовом носителе) готовят из пентоксида ванадия, гипса, бисульфата калия и диатомита (или инфузорной земли). Он имеет состав [c.253]

    Наиболее активным катализатором является платина, однако она вышла из употребления вследствие дороговизны и легкой отравляемости примесями обжигового газа, особенно мышьяком. Оксид железа дешевый, не отравляется мышьяком, но при обычном составе газа (7% SO2 и 11% О2) он проявляет каталитическую активность только выше 625°С, т. е. когда Jip<70%, и поэтому применялся лишь для начального окисления SO2 до достижения Хр 50—60%. Ванадиевый катализатор менее активен, чем платиновый, но дешевле и отравляется соединениями мышьяка в несколько тысяч раз меньше, чем платина он оказался наиболее рациональным, и только он применяется в производстве серной кислоты в СССР. Ванадиевая контактная масса содержит в среднем 7% V2O5 активаторами являются оксиды щелочных металлов, обычно применяют активатор К2О носителем служат пористые алюмосиликаты или диоксид кремния. Обычные ванадиевые контактные массы представляют собой пористые гранулы, таблетки или кольца. При катализе оксид калия превращается в K2S2O7, а контактная масса в общем представляет собой пористый носитель, поверхность пор которого смочена пленкой раствора пяти-оксида ванадия в жидком пиросульфате калия. [c.129]

    В насыщенном катализаторе активаторы присутствуют в виде легкоплавких сульфатов или пиросульфатов состава КаО-пЗОз (п = 1—4 в зависимости от условий). В процессе катализа контактная масса представляет собой пористый носитель, поверхность пор которого смочена пленкой раствора УгОб в жидком пиросульфате калия [61, 62]. АЬОз, по-видимому, стабилизирует структуру носителя ЗЮг и Ва304. [c.121]

    Отжатый от влаги носитель выдерживают 3—4 ч в сушильной камере 9 с электрическим обогревом при ПО—120°С и направляют на пропитку в реактор 7. Метаванад т калия из технической УгОб готовят в реакторе 5 по методике, приведенной выше (см. стр. 117). В емкости растворяют сухой сульфат калия в воде при нагревании до 80 °С и перемешивании. Исходные концентрации солей в растворах до смешения составляют 160 г/л КУОз (в пересчете на УгОз) и 120 г/л Кг504 объемное соотношение КУОз Кг504 в пропиточном растворе— 1,5 1. В реактор 7, снабженный паровым обогревом и мешалкой, загружают носитель, заливают пропиточный раствор, из расчета 1,5 объема на 1 объем носителя, включают обогрев и мешалку. Пропитку ведут при 80°С в течение 2 ч. Конец пропитки определяют по изменению концентрации пропиточного раствора. [c.142]

    Дегидрирование изобутана в изобутилен. Эффективные катализаторы для превращения низших алканов в алкены — это окислы металлов VI группы, способные к активированной адсорбции водорода при повышенных температурах. На практике наибольшее распространение получили катализаторы на основе окиси хрома, нанесенной на окись алюминия. Наиболее активна аморфная форма окиси трехвалентного хромаСгаОз, содержащая некоторое количество соединений шестивалентного хрома. Роль окиси алюминия помимо основной функции носителя заключается в тормозящем действии на процесс кристаллизации окислов хрома, приводящий к потере активности катализатора. Кислотная функция окиси алюминия, наличие которой ускоряет реакции изомеризации и крекинга, подавляется добавлением небольших количеств щелочных металлов, в частности окиси калия. В некоторых случаях катализаторы дегидрирования алканов Q—Се промотируются редкоземельными элементами, например NdjOa, уменьшающих период разработки . Катализаторы на основе окиси алюминия неустойчивы к действию влаги, поэтому распространенный прием повышения степени превращения (и селективности) за счет снижения парциального давления углеводо- зодов при разбавлении сырья водяным паром в данном случае неприменим. [c.351]

    Реакции углерод-углеродного присоединения, катализируемые основаниями, представляют интерес, поскольку они позволяют с хорошим выходом синтезировать углеводороды и родственные соединения в результате простого одностадийного процесса. Реакции идут в относительно мягких условиях в присутствии щелочных металл ов (диспертированных или на носителях). В случае олефинов, имеющих в молекуле активированную двойную связь, эффективным катализатором может быть грег-бутоксид калия, растворенный в диметилсульфоксиде. [c.174]

    Выполнение работы. Включают прибор согласно инструкции. Устанавливают температуру термостата колонки 80 °С, температуру термостата детектора 160°С, температуру испарителя 170°С. Газ-носитель пропускают через колонку со скоростью 65 мл/мин, контролируя ее пенным расходомером. Подают токовую нагрузку на ДТП 130 мА. Указатель шкалы чувствительности устанавливают в положение 1 4 . После установления на хроматограмме стабильной нулевой линии в испаритель хроматографа вводят микрошприцем анализируемую пробу 0,5—1,0 мкл (V m) в зависимости от содерлония компонентов. На хроматограмме получают три пика. Хроматографирование повторяют три раза. Измеряют Ir для кал<дого компонента на трех хро- [c.198]

    Принципиальная схема получения фталевого ангидрида газофазным окислением о-ксилола представлена на рис. 15. В настоящее время окисление обычно проводят на стационарном слое катализатора в реакторе трубчатого типа. Катализатором является оксид ванадия (V) на носителе или смешанные ванадий-калий-сульфатносиликагелевые катализаторы. Для сохранения активно- [c.81]

    Окисление нафталина проводится как на оксиде ванадия (V), плавленном или нанесенном на ннертый носитель, так и на сложном ванадий-калий-сульфатносиликагелевом катализаторе (ВКСС). Сопоставление окисления нафталина на этих катализаторах дано ниже [128, с. 7]  [c.95]

    При снижении подачи водяного пара возрастает коксообразо-вание, углубляемое крекирующей способностью алюмосиликатов, обычно используемых в качестве носителя. Поэтому необходимо было повысить селективность алюмосиликатов и снизить их активность. При введении в катализатор калия снизилось образование углерода. Результатишым оказалось также введение урана, Обычно брали сырье с 4.к. = 180 °С. Ниже приведены данные о получении газа при каталитическом риформинге фракции с /к.к.= = 270°С [16]  [c.201]

    Поскольку катализатор не растворим В реакционной среде, достаточно большую поверхность контакта получают, нанося калий в виде тонкой пленки на какой-либо носитель (кварцевый песок, тальк.а-А12О3 или К2СО3 ). [c.104]

    Четвертый катализатор получают, растворяя пятиокись ванадия в натриевой щелочи и добавляя сульфат калия и кизельгур. Смесь нейтрализуют серной кислотой, сушат, таблетируют и прокаливают. Поскольку изготовители промьпиленных катализаторов не указывают точно способ приготовления своих катализаторов, то приведенные данные имеют приближенный характер /6, 9/. Хорошо известно, что в условиях опыта катализатор пятиокись ванадия - сульфат щелочи - пиросульфат представляет собой очень вязкий расплав, покрывающий носитель тонкой пленкой. [c.276]


Смотреть страницы где упоминается термин Калий носители: [c.105]    [c.203]    [c.205]    [c.234]    [c.167]    [c.466]    [c.201]    [c.614]    [c.252]    [c.141]    [c.146]    [c.177]    [c.323]    [c.324]    [c.100]   
Химический энциклопедический словарь (1983) -- [ c.248 ]




ПОИСК





Смотрите так же термины и статьи:

Калий хлористый, носитель

Калия бромид носитель для следов радия

Калия бромид, носитель для следов свинца

Калия сульфат, носитель для следов полония

Калия фторид, носитель для следов протактиния

Калия хлорид, носитель для следов свинца



© 2025 chem21.info Реклама на сайте