Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Индекс вязкости масел определение

    Индекс вязкости масла МС-20С находят по табл. 2 на пересечении значений вязкости масла, определенной при 50 и 100° С. [c.141]

    Индекс вязкости является относительной величиной, показываю щей степень изменения вязкости масла в зависимости от температурь т. е. характеризует пологость температурной кривой вязкости масла. Он определяется при помощи двух серий эталонных масел. Эталонные масла первой серии имеют очень пологую температурную кривую вязкости, и их индекс вязкости условно принят за 100,единиц. Эталонные масла второй серии имеют очень крутую температурную кривую вязкости, и их индекс вязкости принят за нуль. Масла одной и той же серии отличаются друг от друга только величиной вязкости. Определение индекса вязкости основано на сравнении испытуемого масла с двумя эталонными маслами двух серий, имеющими при 98,8° С вязкость, одинаковую с вязкостью испытуемого масла.  [c.155]


    Для определения индексов вязкости служит таблица, которой пользуются тогда, когда для испытуемого масла известны кинематические вязкости при любых двух температурах в пределах от 40 до 120° Ц и если разность между этими температурами достаточно велика (не менее 40° С). [c.269]

    Общая методика определения индекса вязкости заключается в следующем 1) определяют экспериментально и выражают в секундах вязкость испытуемого масла при 100°F и 210°Р 2) находят, пользуясь вспомогательной таблицей (см. табл. 36) или выведенными Дином и Дэвисом уравнениями значения величин Н и L и подставляют их в приведенную выше формулу. Уравнения для вычисления величин Н и L  [c.754]

    Существует несколько систем определения индекса вязкости, но наибольшее значение получила система Дина и Девиса. Расчеты, позволяющие определять индексы по этой системе, таблицы и номограммы, приводятся в справочниках по моторным маслам [И]. [c.393]

    Повышение индекса вязкости масел при добавлении вязкостных присадок можно объяснить следующим образом. Под влиянием колебательно-вращательных движений макромолекулы полимера принимают в растворах самые разнообразные формы. В разбавленных растворах макромолекулы менее зависят друг от друга в своем тепловом движении, поэтому конформационный набор их весьма разнообразен. При этом вязкость разбавленных растворов вязкостных присадок мало зависит от температуры, и загущенные масла имеют высокий индекс вязкости. С увеличением концентрации вязкостных присадок в маслах расстояние между макромолекулами быстро сокращается, появляется межмолекулярное взаимодействие и набор конформаций, принимаемых макромолекулами, обедняется. Поэтому максимум значения индекса вязкости соответствует определенному значению концентрации вязкостной присадки. Дальнейшее увеличение концентрации вязкостной присадки приводит к снижению индекса вязкости загущенных масел. [c.144]

    И 100° С, а наклонные линии соответствуют значениям ИВ в пределах от —40 до 120. Определение ИВ сводится к восстановлению перпендикуляров к осям координат из точек, отвечающих вязкостям исследуемого масла при 50 и при 100° С. Точка пересечения перпендикуляров с наклонными линиями дает искомую величину ИВ. Еще более удобна для нахождения индекса вязкости номограмма, разработанная Г. В. Виноградовым (рис. 17). Ключ к пользованию номограммой дается в правом ее углу. Определение ИВ сводится к соединению прямыми линиями известных величин вязкости при [c.54]

    Было найдено, что уже малые количества полимеров вызывают сильное повышение вязкости масла улучшается также температурная кривая вязкости (индекс вязкости). Результаты определения вязкости и индекс вязкости различных образцов масел даны в табл. 47. [c.251]


    ОЧИСТКИ (прямая А) и для того же масла +1% п Рафина" (прямая В). Из этого графика видно, что (л строго подчиняется показательному закону, гак же как и /. Прибавление парафина к маслу хотя и повышает подвижность его в определенной области температур, но наклон прямой меняется и становится более крутым, вследствие чего подвижность масла начинает падать ниже таковой для масла 0ез парафина. Это обстоятельство опровергает общепринятый взгляд на положительное влияние парафина на индекс вязкости масла при температурах ниже определенной критической температуры парафин начинает понижать индекс остаточной вязкости масла.  [c.186]

    При определении индекса вязкости масла по данной формуле должно соблюдаться следующее условие все три масла С, Н и V должны иметь одинаковую вязкость в секундах Сейболта при 98,9° С. [c.6]

    При определении индекса вязкости масла по данной формуле нужно соблюдать следующее условие все три масла Ь, Н ш V должны иметь одинаковую вязкость при 99°. В связи с этим эталонные масла нужно подбирать из двух серий масел, обладающих необходимой градацией вязкости при 99°. [c.40]

    Масло с более высоким индексом вязкости имеет лучшую текучесть при низкой температуре (запуск холодного двигателя) и более высокую вязкость при рабочей температуре двигателя. Высокий индекс вязкости необходим для всесезонных масел и некоторых гидравлических масел (жидкостей). Индекс вязкости определяется (по стандартам ASTM D 2270, DFN ISO 2909) при помощи двух эталонных масел. Вязкость одного из них сильно зависит от температуры (индекс вязкости принимается равным нулю, VI=0), а вязкость другого - мало зависит от температуры (индекс вязкости принимается равным 100 единиц, VI =100)., При температуре 100°С вязкость обоих эталонных масел и исследуемого масла должна быть одинаковой. Шкала индекса вязкости получается делением разницы вязкостей эталонных масел при температуре 40°С на 100 равных частей. Индекс вязкости исследуемого масла находят по шкале после определения его вязкости при температуре 40°С, а если индекс вязкости превышает 100, его находят расчетным путем (рис. 2.8). [c.49]

    Критерием качества рафината, по которому ведется управление процессом, служит, как правило, его показатель преломления при 50 или 60 С. Он определяется быстро, с достаточной точностью и связан с другими показателями качества как рафината, так и готового масла. При постоянном составе поступающего на очистку сырья по показателю преломления рафината может быть определен такой важный показатель качества масла, как индекс вязкости. При очистке остаточного сырья управление про- [c.212]

    Перегонка нефти при атмосферном давлении удаляет из нее бензин и дистиллятные компоненты топлива, оставляя мазут, который содержит смазочные масла и гудрон. Дальнейшая перегонка под вакуумом дает так называемые "вакуумные дистилляты" в верхней части колонны и гудрон в виде остатка. Простая обработка серной кислотой, известью и отбеливающей глиной превращает дистилляты в приемлемые по качеству продукты с низким индексом вязкости. Для производства продуктов с высоким и средним индексом вязкости необходимо использовать определенные виды экстракции растворителями, отделяющими окрашенные, нестабильные и имеющие низкий индекс вязкости компоненты. На конечном этапе из масла удаляют парафины путем его растворения в метилэтилкетоне (МЭК), охлаждения и фильтрации для получения масел с температурой застывания от минус 10°С до минус 20°С. Изготовитель масла может подвергнуть его финишной гидродоочистке для удаления сфы, азота и окрашивающих составляющих. Этот процесс показан в виде диаграммы на следующей странице. [c.29]

    Таким образом, для определения индекса вязкости по Дину и Дэвису необходимо знать вязкость исследуемого масла при двух температурах (100—200° Р) и иметь под рукой таблицы вязкости масел стандартных серий. В системе Дина и Дэвиса индекс 100 приписан маслам из пенсильванской нефти и индекс О — маслам из тяжелых нефтей Голф-Кост. По мысли авторов все другие масла должны иметь индекс от О до 100. Однако в настоящее время известны масла с индексом вязкости выше 100 и ниже 0. [c.44]

    Как известно, использование этой формулы в представленном виде позволяет на диаграмме с логарифмической сеткой изображать зависимость вязкости нефтяных масел от температуры прямой линией. Следует иметь в виду, что по последним данным для большинства масел эта формула дает лучшее совпадение с результатами практических определений при значении а = 0,6, а не 0,8, как принималось ранее. Для оценки вязкостно-температурных свойств смазочных масел в соответствии с ГОСТами применяются следующие показатели отношение кинематической вязкости масла при 50° С к кинематической вязкости того же масла при 100° С, температурный коэффициент вязкости и индекс вязкости. [c.191]

    Так как анилиновая точка является мерилом парафинистости масла, существует определенная связь ее с индексом вязкости, при условии учета зависимости анилиновой точки от вязкости. [c.161]


    Как показано в главе III, индекс вязкости рассчитывается по значениям вязкости, найденным при температурах 37,8 и 98,9°. Кривые зависимости вязкости от температуры, отражающие вязкости масла при температурах от —18° и ниже и до +150° н выше, обычно получают экстраполяцией от вязкостей, фактически определенных при температурах 20, 37,8 54,4 и (или) 98,9° на графиках ASTM, путем проведения прямых через намеченные точки. Вязкости и индексы вязкости масел, содержащих полимеры, определяют на основе предположения, что они ведут себя так же, как обычные нефтяные масла, что позволяет располагать значения вязкостей на прямых линиях, нанесенных на графиках ASTM в тех же температурных пределах, как и при обычных маслах. Имеются основания считать, что эти предположения ошибочны, что и объясняет некоторые противоречия в истолковании значений испытаний масел, содержащих полимеры. На рис. 52 показаны значения вязкости, нанесенные на вязкостнотемпературном графике ASTM D-341 для основного масла с высоким индексом вязкости и температурой застывания —37° с добавкой полимеров или без них. Следует заметить, что прямая, экстраполированная от значений вязкости, измеренных при 20 37,8 и 98,9°, масла, содержащего полимеры, пересекает кривые вязкости дистиллятного масла без присадки при температуре около —16°. При более низких температурах экстраполированные вязкости, указанные для масла с добавками, располагаются [c.213]

    Поэтому вязкостные присадки должны применяться с должной осторожностью и оцениваться более широко, чем в обычных лабораторных определениях вязкости и индекса вязкости. Хотя вязкостные присадки и имеют положительные свойства при осто-рожном обращении и с учетом их недостатков, они не могут служить средством улучшения качества плохого масла и, очевидно одним из неправильных путей их применения является использование в маслах с низким индексом для получения масла с хорошей вязкостно-температурной кривой, присущей хорошо очищенному парафинистому маслу. С другой стороны, добавка вязкостной присадки к дистиллятному маслу с удовлетворительными исходными показателями может иметь определенные преимущества при работе при низких температурах. [c.215]

    Индекс вязкости является относительным числом, характеризующим пологость температурной кривой вязкости смазочных масел. Для определения этого показателя качества пользуются таблицей, разработанной Всесоюзным научно-исследовательским институтом по переработке нефти и газа и получению искусственного жидкого топлива. Названная таблица одобрена Государственным комитетом стандартов, мер и измерительных приборов при Совете Министров СССР в качестве руководящего технического материала. Чем выше индекс вязкости масла (ИВ), тем более иолога температурная кривая вязкости и тем лучше масло. [c.176]

    Определение индекса вязкости масла требует измерения кинематической вязкости при 40°С и 100°С. Индекс вязкости далее находят по таблицам ASTM D 2270 или ASTM D 39В. Поскольку индекс вязкости определяется по вязкостям при 40°С и 100°С, он не прогнозирует низкотемпературную вязкость или вязкость при вьюокой температуре и высокой скорости сдвига. Зти вязкости измеряются вискозиметрами S, MRV, низкотемпературным вискозиметром Брукфильда и вискозиметрами, работающими при высокой температуре и высокой скорости сдвига. [c.27]

    Как известно, в зависимости от условий полимеризации из одного и того же олефина могут быть получены различные вещества. Как упомянуто выше, газообразные при нормальных условиях олефины при каталитических процессах при определенной температуре и давлении склонны к ди- и тримери-зацпи. Эту реакцию широко псиользуют для промышленного получения моторных топлив с высоким октаповым числом. В частности, изобутилен с успехом используется для реакции димеризации в диизобутилен. Если применить другой катализатор и иные рабочие условия, тот же изобутилен, как уже было упомянуто, может полимеризоваться в высокомолекулярные твердые каучукоподобные вещества (оппанол, вистанекс). При воздействии безводным хлористым алюминием на жидкий изобутилен при комнатной температуре или на растворенный в инертном растворителе изобутилен протекает медленная реакция, в результате которой получается маловязкое масло с хорошим выходом. Оно обладает плохим индексом вязкости (вязкостно-температурной, характеристикой — ВТХ). [c.588]

    Индекс вязкости — показатель, характеризующий вязкостно-температурные свойства масла. Чем выше индекс вязкости (ИВ), тем более пологой является вязкостно-температурная кривая масла в области плюсовых температур (т. е. тем менее значительно изменение режима смазки с изменением температуры). ИВ является важным товарным показателем масла, так как характеризует качество (глубину) его очистки — чем выше ИВ, тем лучше очищено масло. Вместе с тем, показатель ИВ не следует абсолютизировать, так как в значительной мере его значение зависит от углеводородной природы сьфья для производства масел. Так, из нефтей нафтенового основания производство базовых масел с высокими ИВ весьма затруднительно, что отнюдь не делает эти масла непригодными для выработки товарных масел определенного ассортимента. По индексу вязкости масла можно разделить на низкоиндексные (ИВ не выше 80), среднеиндексные (ИВ равно 80—90) и высокоиндексные (ИВ равно 90-95 и выше). В качестве компонентов базовых масел современного уровня качества используют базовые масла со сверхвысоким индексом вязкости (ИВ выше 100), представляющие собой продукты глубокой гидрокаталитической переработки нефтяного сырья. Учитывая важность и высокую информативность такого показателя, как индекс ИВ, Американский нефтяной институт (АР1) рекомендует классифицировать базовые масла по трем показателям индекс вязкости, доля нафтено-парафиновых углеводородов и содержание серы (табл. 10.2). [c.426]

    Разные вязкостные присадки различаются по сдвнгоустойчи-востп в зависимости от свойств, присущих соответствующему типу полимеров, а также от тина базового масла, в котором полимер растворен, и его концентрации в масле. В общем низкоиндексные базовые масла, содержащие вязкостные присадки, или масла с высокой концентрацией полимеров, обладают меньшей механической устойчивостью. Рис. 51 показывает изменение вязкости и индекса вязкости масла, содержащего полимер, в ходе дорожных испытаний в автоматической трансмиссии легкового автомобиля, имеющей гидравлический привод. Уменьшение вязкости и индекса вязкости вполне подобно тому, что показано на рис. 50 для лабораторных опытов определения сдвигоустойчивостп. [c.211]

    Следует отметить. некоторые интересные особенности этих масел. Автол 10 фурфурольной очйстки и то же масло - -1% парафина каждое в отдельности обнаруживают два определенные тиксотропные состояния. А тол 18 селективной очистки также обнаруживает два тиксотропные состояния хгри-бавледие парафина к селективному маслу хотя и дает значительное повышение предельной тиксотропной силы, но в то же время понижает ее температурный коэффициент. Это указывает на то, что ниже некоторой температуры прибавленный парафин не вызывает повышения предельной тиксотропной силы, а, наоборот, даже может понизить ее. Селективная очистка масла не только понижает температурный коэффициент вязкости, т. е. повышает индекс вязкости масла, но также и понижает температурный коэффициент предельной тиксотройной силы. [c.184]

    Более просто и быстро индекс вязкости масла может быть определен по номограммам Доксея (глава 23). Масло, обладающее более высоким индексом вязкости, т. е. пологой температурной кривой вязкости, предпочтительнее, чем масло с крутой кривой вязкости. Наилучшими в этом отношении являются синтетические масла, масла парафинового основания и масла, содержащие присадки, улучшающие индекс вязкости. [c.6]

    Л/Плотность. В рящ П-К-Ар-1Ш-, СН - шютность и вязкость увеличиваются, а индекс вязкости уменьшается. В связи с этш. плотность в сочетании с вязкостью в определенной степени отражает уг-леводородньй состав масла и мокет указывать на его вязкостно-температурные свойства. [c.139]

    Как известно, современное моторное масло должно отвечать определенному комплексу требований. Оно должно обладать противокоррозионными, моющими, противоизносными, антипен-ными, противозадирными, нейтрализующими и другими важными свойствами. Масла до-лжны обеспечивать надежную работу двигателей как на высокотемпературном, так и на низкотемпературном режиме. Индекс вязкости современных моторных масел должен быть не менее 90. Чтобы обеспечить моторный парк высококачественными маслами необходимо иметь хорошие базовые масла и эффективные присадки к ним. Объем производства присадок в стране зависит от объема производства масел, структуры их потребления и состава композиций присадок. Следует отметить, что улучшение качества масел и усовершенствование технологии изготовления двигателей позволит резко сократить расход смазочных материалов. [c.8]

    Индекс вязкости — это сравнительная характеристика, предложенная Дипом и Девисом, в основе которой лежит сравнение вязкостно-температурной характеристики испытуемого масла с соответствующими характеристиками эталонных масел. Условно принято, что индекс вязкости эталонного масла с пологой кривой вязкости равен 100, а индекс вязкости эталонного масла с крутой температурной кривой равен 0. Для определения индекса вязкости по методике Дина и Девиса было необходимо определить вязкость испытуемого масла (в единицах условной вязкости секундах Сейболта) при 37,8° С (100° Р) и 98,9° С (210° Р) и подобрать для сравнения из двух наборов (серий) эталонных масел (с индексами вязкости О н 100) образцы эталонных масел, у которых вязкость при 98,9° С равна вязкости испытуемого масла при этой же температуре. Затем по таблице надо было найти, чему равна вязкость этих эталонных масел при 37,8° С и произвести подсчет индекса вязкости по формуле [c.192]

    Масла моторные (ГОСТ 17479—72) имеют пидекс М и по эксплуатационным свойствам подразделяются на шесть групп А, Б, В, Г, Д, Е, каждая из которых предназначена для определенного типа двигателей. По вязкости выделено семь классов обычных масел номинальной вязкостью 6, 8, 10, 12, 14, 16, 20-10 м / и четыре класса загущенных масел с индексом вязкости пе нпже 125. [c.245]

    А. М. Кулиев, И. М. Оруджева и С. В, Красовская [92] продолжили указанные исследования, в области каталитического облагораживания автола 10 и авиамасла МК, Они производили операцию с указанными маслами при 350 —450° в присутствии естественного и активированного гумбрина и синтетического алю-мосиликатного катализатора с последующей отгонкой при 200° из катализата легких фракций в присутствии 5% естественного гумбрина. Эти исследования показали, что по мере повышения температуры (до определенного предела) улучшаются качества автола 10—уменьшаются плотность и вязкостно-весовая константа и повышается индекс вязкости с 43 до 60—66, Оптимальная температура облагораживания автола 10 в зависимости от активности катализатора составляет 375—400°. При более высоких температурах усиливается разложение углеводородов, наблюдаемое в зна- [c.252]

    Сопоставление свойств обоих катализаторов проводилось также путем определения условий, в которых получается одинаковый выход масла с заранее заданной температурой вспышки. При этом оказалось, что для катализатора AbOa-W-Ni также требуются более высокие температуры, но зато получаются масла с большим индексом вязкости. Как и следовало ожидать, для обоих катализаторов повышение давления водорода, например с 250 до 600 атм, улучшает соотношение индекс вязкости — выход. Увеличение давления водорода приводит к повышению скорости иедеструктивных реакций гидрирования и оказывает незначительное влияние на реакции деструкт1шного гидрирования. [c.291]

    В дальнейшем Доксей и сотрудники на основе накопившегося экспериментального материала разработали номограмму, по которой, зная кинематическую вязкость испытуемого масла в сантисток-сах при 50 и 100° С, можно легко определить индекс вязкости по системе Дина и Девиса. По этой номограмме составлены таблицы, которыми теперь и пользуются при определении индексов вязкости. Следовательно, для определения индекса вязкости надо экспериментально определить кинематическую вязкость испытуемого масла при 50 и 100° С и воспользоваться таблицами. [c.192]

    Автор предает очень большое значенпе индексу вязкостп, характеризуя им чуть ли пе все или во всяком случае болыпинство эксплуатащюнных свойств масел. Фактически индекс вязкости характеризует низкотемпературные свойства масла, т. е. пологость его вязкостно-температурной кривой. Кроме того, индекс вязкости показывает глубину очистки масла. Чем оп выше, тем, очевидио, масло подвергалось более глубокой очистке, т. е. более полному удалению ароматических компонентов. Поэтому высокое значение индекса вязкости еще не говорит и не может говорить о высоких эксплуатационных свойствах масла, особенно тех из них, которые связаны со стабильностью масла против окисления. Большей стабильностью против окисления обладает масло, имеющее определенное для каждого вида сырья, свое оптимальное соотношение углеводородных комионентов, в том числе и ароматических. Индекс вязкости таких масеп будет ниже, чем у глу-бокоочищенных белых масел, полностью лишенных ароматических компонентов п пе пригодных к эксплуатации вследствие своей низкой стабильности. См. Н. И. Ч е р и о ж у к о в, С. Э. К р е й н и Б. В. Лосиков. Химия минеральных масел, изд. 2-е. Гостоптехиздат, 1859, а также С. Э. К рей я. Статья в сборнике Химический состав и эксплуатационные свойства масел . Гостоптехиздат, 1957. [c.151]

    Несмотря на то, что имеется достаточное количество присадок,, улучшающих индекс вязкости, и применяются они много лет, в литературе имеется очень мало данных о их физико-химических свойствах и поведении в моторных маслах, в отличие от таких присадок, как ингибиторы, детергенты и депрессаторы. Повышение индекса вязкости прп помощи вязкостных присадок вызывало некоторое противоречие между установившимся определенным понятием вязкостно-температурной характеристики смазочпых масел и высоким индексом вязкости, полученным за счет добавления вязкостных присадок, что вынуждает разделять индексы вязкости масел на действительные и кажущиеся . [c.204]

    Соответствующие товарные вязкостные присадкп в базовых маслах различного типа должны содержаться в определенной концентрации для достижения необходимого индекса вязкости. Их свойства достаточно сходны, как видно из табл. 53 и 54, и могут рассматриваться как вполне характерные для данного класса соединений. [c.208]

    Результаты дорожных испытаний но оценке влияния качества моторных масел па их расход дают значительные расхождения для различных автомобилей, что связано с большим количеством переменных в процессе этих испытаний тогда как сравнение данных испытаний небольшого количества автомобилей может привести к ошибочным выводам. Те)м не менее, если испытывать достаточное количество автомобилей, то все же усредненные данные могут свидетельствовать о наличии определенных закономерностей. На основании таких испытаний можно заключить, что тредгя главными свойствами моторных масел, определяющими интенсивность их расходования, являются испаряемость, вязкость и индекс вязкости. Мало испаряющиеся (в определенном температурном интервале) масла высокой вязкости и с высоким индексом вязкости расходуются в наименьшей степени. [c.306]


Смотреть страницы где упоминается термин Индекс вязкости масел определение: [c.303]    [c.158]    [c.139]    [c.35]    [c.267]    [c.606]    [c.21]    [c.31]    [c.191]    [c.297]    [c.307]    [c.12]   
Смазочные материалы на железнодорожном транспорте (1985) -- [ c.7 ]




ПОИСК





Смотрите так же термины и статьи:

Вязкость и индекс вязкости

Вязкость определение

Индекс

Номограмма для определения индекса вязкости смазочных масел

Прил ожение III. Номограмма для определения индекса вязкости смазочных масел



© 2025 chem21.info Реклама на сайте