Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиэтилен физико-механические свойств

    Полиэтилен подвергается медленному окислению в атмосферном воздухе, что приводит к изменению его физико-механических свойств. Это окисление полиэтилена можно резко уменьшить путем добавки специальных замедлителей — фенолов, аминов и некоторых других веществ. Эти вещества добавляются в количестве от нескольких десятых процента и до 1%. Они уменьшают окисляемость полиэтилена и не ухудшают других его свойств. [c.338]


    П о к р ыт ИЯ на основе полиэтилена среднего давления и сополимера этилена с пропиленом. Опытные партии СЭП и ПЭ среднего давления имели больший процент крупных частиц, чем промышленный полиэтилен низкого давления. В качестве стабилизаторов были применены неозон А + Д. Ф. Ф. Д. (по 0,2%) и сажа газовая, канальная 0,5% (табл. 5.13). Процесс напыления этих композиций как по характеру, так и по скорости протекал аналогично процессу нанесения порошковой системы из полиэтилена низкого давления. Физико-механические свойства полученных пленок представлены в табл. 5.14. [c.136]

    Химическая природа полимеров, как видно из рассмотрения способов их получения и строения макромолекул (см. ч. 1), принципиально не отличается от химической природы их низкомолекулярных аналогов (например, полиэтилен, полипропилен и другие производные этиленовых углеводородов и этан, пропан и другие парафины и их производные). Основная разница состоит в огромной длине макромолекул полимеров по сравнению даже с большими молекулами низкомолекулярных аналогов. Это придает по-ли.мерам тот особый комплекс физико-механических свойств (см. [c.214]

    Конечно, не только форма, но и химическая природа макромолекулы влияет на физико-механические свойства соответствующего полимерного материала. Если между макромолекулами линейного полимера не возникает значительного взаимодействия (а это значит, что в макромолекуле нет сильно взаимодействующих друг с другом полярных групп), то макромолекулы могут легко передвигаться относительно друг друга, соответствующий материал оказывается тягучим таков невулканизированный каучук, полиэтилен (особенно при нагревании). Эластичность (способность восстанавливать первоначальную форму после снятия нагрузки) таких материалов ограниченна. По мере того как возрастает взаимодействие между макромолекулами линейного полимера (т. е. по мере накопления в полимере полярных, взаимодействующих друг с другом групп), его свойства постепенно приближаются к свойствам трехмерного полимера. Того же результата можно достигнуть, химически сшивая макромолекулы. В каучуке это происходит при нагревании с серой при малом содержании серы получается мягкая, эластичная резина, когда же число серных мостиков растет, материал постепенно становится все более твердым, а эластичность его падает. При содержании серы 30—50 , о получается твердый эбонит, который до появления пластмасс имел большое значение как электроизоляционный материал. [c.317]


    Действие ионизирующих излучений. Под влиянием ионизирующих излучений полимеры претерпевают глубокие химические и структурные изменения, приводящие к изменению физико-химических и физико-механических свойств. Регулируя интенсивность облучения, можно изменять свойства полимеров в заданном направлении, например переводить их в неплавкое, нерастворимое состояние. Такая обработка некоторых полимеров уже применяется в промышленном масштабе. Облученный полиэтилен обладает очень высокой термостойкостью, химической стойкостью и другими ценными свойствами (рис. 47). [c.292]

    Полиэтилен марок 270—278, выпускаемый по ТУ 6-05-1870—79, может быть получен с узким, средним п широким ММР и ПТР в пределах 0,2—55 г/10 мин. Он отличается от ПЭНД, получаемого по ГОСТ 16338—77, большей чистотой, белизной, более высокими физико-механическими свойствами. Этот материал предназначен для изготовления крупногабаритных изделий методом литья, для переработки в моноволокно, а также для переработки в крупногабаритные изделия методом экструзии с раздувом (ПЭНД порошкообразный с большой насыпной плотностью). По электрическим показателям и химической стойкости полиэтилен 270—278 аналогичен полиэтилену, получаемому по ГОСТ 16338-77. [c.222]

    При введении ПДВ в пластмассы их физико-механические свойства практически не изменяются или изменяются крайне незначительно (исключение составляет полиэтилен низкого давления). Показатели физико-механических [c.432]

    Присутствие низкомолекулярных примесей, которые являются поверхностно-активными веществами по отношению к полимеру, на поверхности полимеров — обычное явление. Например, в техническом полиэтилене различные примеси выделяются на поверхность в процессе охлаждения [30]. Концентрируясь на поверхности, эти вещества создают ослабленную зону и снижают адгезию к поверхности. Удаление из полиэтилена низкомолекулярных примесей путем фракционного осаждения приводит к значительному улучшению физико-механических свойств полиэтилена и повышению его адгезии к различным материалам [30—32]. [c.107]

    В последнее время получили распространение и так называемые гетерогенные мембраны. В последних твердое вещество, обеспечивающее ионный обмен, распределено в непроводящей матрице, которая придает мембране подходящие физико-механические свойства. В качестве подобных инертных веществ используют силиконовый каучук, полиэтилен, полистирол, коллодий и др. Разнообразные электроды этого типа с селективной чувствительностью по ионам SOf, l", ОН , Zn +, Ni + и др. получены при сочетании подходящих ионообменных смол (см. гл., Х1П) с соответствующей инертной матрицей. В других электродах в качестве активного вещества используют различные малорастворимые соли или хелатные комплексы. На этой основе созданы электроды, чувствительные к ионам F , S , I", РО , SO4", К , Na+, Са +, Ag+ и др. [c.343]

    В отечественной практике для защиты оборудования находят применение следующие пластмассы пластикат, полиэтилен и полипропилен, фторопласт, пентапласт. Их основные физико-механические свойства приведены в табл. 2.6. [c.239]

    Пентапласт стоек к большинству органических растворителей, слабым и сильным щелочам, слабым и некоторым сильным кислотам на него действуют только сильные окисляющие кислоты, такие, как азотная и дымящая серная [32]. При этом воздействие агрессивных сред значительно меньше влияет на изменение механических свойств пентапласта, чем на изменение свойств фторопласта-3. Пентапласт более стоек, чем полипропилен, к концентрированным минеральным кислотам (30%-ной хромовой и 60%-ной серной) и органическим кислотам (75%-ной уксусной) и особенно к органическим растворителям кетонам, хлорсодержащим и ароматическим углеводородам. Такая повышенная химическая стойкость пентапласта обусловлена его строением — прочностью связи хлорметильных групп с углеродом основной цепи и компактностью его кристаллической структуры. Удачное сочетание физико-механических свойств с повышенной химической стойкостью выгодно отличает пентапласт от других термопластичных материалов. Пленки пентапласта практически непроницаемы для кислорода и азота по сравнению с полиэтиленом они менее газопроницаемы для паров воды и двуокиси углерода, [c.169]

    Для кабельной изоляции возрастает потребление полиэтилена высокой плотности, обладающего по сравнению с полиэтиленом низкой плотности лучшими физико-механическими свойствами, особенно стойкостью к истиранию, а также более низкой влагопроницаемостью, что позволяет использовать его в системах подземной электропередачи. [c.104]

    Полиэтилен недостаточно устойчив к действию жиров. Постепенно поглощая их, он ухудшает свои физико-.механические свойства. От прогоркания поглощенного жира может появиться неприятный запах. Вследствие этого не следует в полиэтиленовых мешочках хранить жирные продукты. [c.154]

    Полиэтилен в зависимости от технологии получения разделяется на полиэтилен высокого давления (ПЭВД) и полиэтилен низкого давления (ПЭНД), физико-механические свойства которых характеризуются следующими показателями  [c.226]


    Полиэтилен в виде пленки используется для обкладки резиновых и других (асбестовых) прокладок с целью повышения их химической стойкости. Химическая стойкость и физико-механические свойства полиэтилена рассмотрены выше, а также указаны в приложении. [c.207]

    В настоящее время известны электропроводящие композиции на основе полиэтилена, содержащие до 40 7о электропроводящего наполнителя, в частности ацетиленовой сажи [1, 2]. Однако введение в полиэтилен столь значительного количества наполнителя существенно ухудшает его физико-механические свойства. Для улучшения деформационно-прочностных свойств 1В полимерную систему вводят высокомолекулярные пластификаторы, а также ведут поиск электропроводящего наполнителя и его оптимального содержания (3, 4]. [c.102]

    Конструкция и размеры червяка зависят от технологических режимов пластикации и физико-механических свойств полимера. В зависимости от этого можно выделить четыре группы червяков для переработки аморфных и кристаллических материалов (полистирол, полиэтилен и др.) материалов с резко выраженной структурой (полиамиды и др.) непластицированного поливинилхлорида и др. термореактивных материалов. Червяки первой и второй групп имеют зоны загрузки, пластикации (сжатия) и дозирования третьей группы — зоны загрузки и пластикации четвертой группы — только зону пластикации. Каждая из групп червяков имеет следующие размеры. [c.151]

    Технический полиэтилен — полупрозрачный рогоподобный материал, обладающий высокими диэлектрическими свойствами и хорошей химической устойчивостью. Физико-механические свойства этого пластика приведены в табл. I. [c.10]

    Полиэтилен сохраняет удовлетворительные физико-механические свойства в достаточно широком интервале температур. Он сохраняет гибкость при —45° и не размягчается при -[-100°. Предел прочности полиэтилена, как и других термопластов, с повышением температуры падает, а способность к пластическому течению возрастает. Поэтому изделия из полиэтилена при температуре выше 60° не могут подвергаться большим механическим нагрузкам. [c.10]

    Полиэтилен способен к окислению в присутствии кислорода, особенно при воздействии ультрафиолетового облучения и при подогреве. При этом снижаются физико-механические свойства полиэтилена, его морозостойкость, диэлектрические показатели, относительное удлинение при растяжении и адгезия к металлам. Окисляющийся полиэтилен быстрее стареет при эксплуатации. [c.107]

    Производство полиэтилена при среднем давлении имеет ряд преимуществ по сравнению с другими методами, К ним относятся доступность и неток-сичность катализаторов, возможность их многократного использования путем регенерации, простота технологического и аппаратурного оформления процесса, меньшая взрыво- и пожароопасность. Полиэтилен СД имеет более высокие показатели физико-механических свойств, чем полиэтилен высокого давления. [c.9]

    По мере повышения содержания хлора н полиэтилене pe. к() изменяются его физико-механические свойства. При хлорировании полиэтилен постепенно начинает утрачивать присущую ему кристалличность и становится высокоэластичным н каучуко-иодобным полимером, по свойствам напоминающим поливинн. -хлорид, содержащий большое количество пластификатора. По мере увеличения содержания хлора и снижения степени криста,I-личности полимера его эластичность возрастает, достигая максимума при 15—20%-ном содержании хлора, одновременно умень-П1ается и прочность полимера. Минимальная прочность хлорированного полиэтилена соответствует. 35—38%-ному содержанию хлора (рис. 70). При еще большем содержании хлора полимер [c.220]

    Разработаны полимерцементы на основе эпоксидно-диановых смол (ЭД-20, ЭД-16, Э-40, ДЭГ-1 и др.) с добавкой в качестве модификатора полиэфиров (МГФ-9 — продукт поликонденсации метакриловой кислоты, фталевого ангидрида и триэтиленгликоля) или жидких тиоколов (полисульфидные олигомеры) и в качестве отвердителей полиэтилен-полиамина или аминофенольного отвердителя АФ-2 (табл. 14). Дл улучшения физико-механических свойств, достижения необходимой вязкости, изменения коэффициента температурного расширения и уменьшения усадки при отверждении в полимерцементы на основе эпоксидных смол вводят кварцевый песок, кварц молотый, тальк, портландцемент, графит, аэросил, маршалит. В ряде случаев наполнитель пропитьшают растворами КОС (алкилалкоксисиланов, силазанов). [c.104]

    При сухом перемешивании красителя с гранулами поликарбоната с последующей экструзией при относительно высоких скоростях и температурах получается неравномерное окрашивание деталей [23, 24]. Для улучшения цветораспределения добавляются некоторые диспергирующие агенты, например полиэтиленгликоль. Однако добавление этих агентов не снимает полностью углублений и полос на поверхности экструдированных или формованных изделий. Кроме того, добавление полиэтилен-гликоля ухудшает физико-механические свойства изделий из поликарбоната. [c.232]

    Наибольшее влияние на свойства ХСПЭ (как и на свойства ХПЭ) оказывают молекулярная масса, разветвленность и степень кристалличности исходного ПЭ. Для получения ХСПЭ используется ПЭ различной структуры со средней молекулярной массой 20—30 тыс. С увеличением молекулярной массы (>30 тыс.) уве-.лшчивается жесткость полимера, уменьшается его термопластичность, ухудшаются технологические свойства получаемого ХСПЭ, повышаются остаточные деформации композиций на его основе.. С уменьшением средней молекулярной массы (<18 тыс.) ухудшаются физико-механические свойства вулканизатов. Наилучшими (свойствами обладают ХСПЭ, полученные из полиэтиленов, имеющих однородный состав по молекулярной массе, регулярную структуру, большую степень кристалличности. Такими свойствами обладает ПЭ высокой плотности, поэтому новые типы ХСПЭ выпускаются на его основе [57, 58]. [c.36]

    Полиэтилен наиболее эффективен в смесях на основе бутилкаучука. Его применение интересно еще и потому, что высокостироль-ные смолы, как было описано выше, непригодны для смесей с бу-тилкаучуком, так как не улучшают физико-механические свойства вулканизатов. [c.60]

    Олефины — 4-метилпентен-1, гексен-1, пентен-1 и 3-метилбути-лен-1—являются ценными мономерами для производства полимеров и сополимеров, обладающих высокой температурой плавления, низкой плотностью, малой теплопроводностью, хорошими механическими и диэлектрическими свойствами [73]. Сополимеризацией этилена с 4-метилпентеном-1 получают линейный полиэтилен низкой плотности — сополимер, характеризующийся ценными физико-механическими свойствами. Пентен-1 служит также сырьем для производства системного пестицида — пропиконазола, поэтому разработка эффективной технологии промышленного производства этих моноолефинов является важной народнохозяйственной задачей. [c.116]

Рис. 2.6. Изменение физико-механических свойств кироминеральных смесей, приготовленных на кирах месторождении Кара-Мурат (о) и Иман-Кара (б), в зависимости от количества введенного полиэтилена а — щебень алексеевский фр. 5—15 мм 30, высевки алексеевские фр. О—5 мм 40, киры Кара-Мурат 30% б — соответственно 30, 35, киры Иман-Кара 35%- I — воско-, 2-мочалообразный полиэтилен Рис. 2.6. <a href="/info/1788249">Изменение физико-механических свойств</a> кироминеральных смесей, приготовленных на кирах <a href="/info/1528743">месторождении Кара</a>-Мурат (о) и Иман-Кара (б), в зависимости от <a href="/info/1616025">количества введенного</a> полиэтилена а — щебень алексеевский фр. 5—15 мм 30, высевки алексеевские фр. О—5 мм 40, киры Кара-Мурат 30% б — соответственно 30, 35, киры Иман-Кара 35%- I — воско-, 2-мочалообразный полиэтилен
    Опытно-экспериментальные работы по выпуску кироминеральных смесей различных составов и строительство на их основе экспериментальных участков дорог подтвердили ранее сделанные выводы о том, что наиболее высокими физико-ме-ланическими свойствами обладают кироминеральные смеси, содержащие низкомолекулярный полиэтилен. По физико-механическим свойствам кироминеральные смеси соответствуют требованиям ГОСТа 9128—76 на холодный асфальтобетон, а в случае применения добавок превосходят его по многим показателям. [c.218]

    Изменение микро- и макроструктуры природной органики кира возможно путем получения битумополимерного вяжущего при объединении кира с полимерными добавками, например с низкомолекулярным полиэтиленом Гурьевского химического завода — отходом производства полиэтилена низкого давления. Создание битумополимерной композиции позволяет не только повысить прочность брикетов, но и существенно улучшить физико-механические свойства кироминеральных смесей. [c.219]

    Изменение физико-механических свойств кироминеральных смесей в зависимости от количества введенного полиэтилена 1—полиэтилен воскообразный 2 — мочалообразный. Состав щебень алексеевский фр. 5— 15 Ш1 — 30°/о высевки алексеевские фр. О—5 мм — 40% киры Мунайлы-Мола (15% вяж.)—30% [c.182]

    Детально исследовано влияние радиационного облучения на физические свойства полиэтилена 2409-2426 Отмечено, что в результате облучения повышается стойкость полиэтилена к деформации при нагревании, а также к растрескиванию. При этом не происходит ухудшения электрических свойств, прочности и других ценных свойств полиэтилена 9 Например, у полиэтилена типа марлекс-50 прочность на разрыв под влиянием р-об-лучения (доза 50-10 рентген) изменяется от 290 до 320 кГ/см . Более эффективным оказалось у-облучвние. При дозе 10 чЮ рентген прочность на разрыв возрастала до 500 кГ/см , а ори дозе 100-10 рентген — до 585 кГ/см . Установлено, что в результате облучения происходит образование поперечных связей в полиэтилене, способствующее улучшению физико-механических свойств (теплостойкости, эластичности и др.) 24ю. Изучение анизотропных изменений в системе фибриллярных макромолекул с весьма высокой осевой ориентацией в процессе сшивания полимера при воздействии ионизирующего облучения показало, что длина в изотропном состоянии в результате процесса сшивания возрастает с ростом степени сшивания 2 ч. Для расплава получены значительно большие удлинения. При облучении полиэтилена в расплавленном состоянии размеры кристаллитов неограниченно уменьшаются с увеличением дозы облучения Скорость роста сферолитов при равной степени переохлаждения не зависит от дозы облучения температуры плавления полиэтилена (марлекс-50) составляли при облучении дозами О, 20, 40 и и 100 мрентген— 138, 128, 121 и 113° С соответственно 416 Описано влияние радиации на индекс расплава 2417. [c.286]

    К этой группе относят вещества с молекулярным весом от 10 ООО до 1 ООО ООО и более. Их молекулы построены из повторяющихся или сходных атомных группировок. Поэтому высокомолекулярные вещества называются иначе полимерами, а сравнительно простые вещества, из которых они строятся, — мономерами. Различают полимеры природные (белки крахмал, клетчатка, целлюлоза, натураль ный каучук) и искусственные. В настоящее время готовится много искусственных высокомолекулярных веществ путем переработки природных полимеров. Таковы продукты обработки клетчатки—ни-тро- и ацетилцеллюлоза, вискоза и тапель продукты обработки белка —- галалит. Наконец, синтетическими высоко.молекулярными веществами называют полимеры, получаемые химическим путем из низкомолекулярных вешеств полиэтилен, полихлорвинил, капрон, нейлон, синтетический каучук и многие другие. Синтетические полимеры часто превосходят природные по физико-механическим свойствам, [c.163]

    Физико-механические свойства полимеров. Физико-механические свойства полимеров сильно зависят от их внутреннего строения. Большое значение для механических свойств имеет форма макромолекул. Различают полимеры 1) линейные, макромолекулы которых можно рассматривать как длинные нити, сравнительно мало связанные друг с другом 2) пространственные, или сетчатые, молекулы которых представляют собой своеобразный каркас. Примеры линейных полимеров описанные ранее полиэтилен, полипропилен, певулканизованный каучук. Пример полимера с пространственной структурой молекул — вулканизованный каучук. [c.336]

    По разработкам проблемной лаборатории пластмасс МТИММП и НПО Пластик нашей промышленностью осваивается выпуск полиэтилен-лавсахювых пленок ЛП-1 п ЛП-3. Физико-механические свойства этих и некоторых других поли-этилен-по.тпэтилентерефталатных пленок представлены в табл. 2 [9, 14]. [c.126]

    Наиболее интенсивное структурирование наблюдается при облучении СКБ и его смеси с полиэтиленом. Радиационная вулканизация резиновых смесей, содержащих в своем составе наряду с каучуком такие пластики, как полиэтилен, полистирол и др., позволяет получать резины, в которых трехмерные структуры образованы как молекулами каучука, так и пластика, т. е. имеет место совулканизации [1, 21. Необходимая коже-подобность, твердость и другие свойства резин обеспечиваются сочетанием каучуков с полиэтиленом, полистиролом и др. В результате совулканизации пластиков с каучуком под влиянием облучения система утрачивает вязко-текучие свойства. Это позволяет получать кожеподобные резины, которые в отличие от серных вулканизаторов не будут давать необратимых дефектов, которые имеют место при тепловой и других видах их обработки на стадиях технологического процесса обувного производства. Подошвенные резины, полученные методом радиационной или радиационно-термической вулканизации каучуков с пластиками, характеризуются высокими физико-механическими свойствами [2, 3]. [c.322]

    Структурные изменения, происходящие при охлаждении расплава в прессформе, оказывают влияние на физико-механические свойства изделий. Полиэтилен, полиамиды и другие кристаллические полимеры в той или иной степени восстанавливают кристаллическую структуру, что сопровождается значительной усадкой. Например, плотность кристаллической фазы полиэтилена равна 1, а аморфной 0,84 г/см , следовательно, кристаллизация полиэтилена сопровождается значительным уменьшением объема (помимо термического сжатия). Быстрое охлаждение кристаллических полимеров приводит к тому, что большая часть аморфной фазы остается незакристаллизованной. [c.106]

    Футеровка пластическими массами. Большинство химически стойких пластических масс получают на основе фенолоформаль-дегидных, виниловых и других смол. По поведению при нагревании они делятся на термопластичные и термореактивные. Первые не претерпевают заметных химических превращений, размягчаются и при остывании вновь приобретают прежние физико-механические свойства. Вторые в результате термического воздействия подвергаются химическим превращениям, что приводит к необра тимому изменению их физико-механических свойств. Из термо пластичных пластмасс в химическом аппаратостроении широк применяют винипласт, фторопласт, полиэтилен, из термореактин ных — фаолит. [c.128]

    Для улучшения физико-механических свойств к полиизобу- тилену прибавляют некоторые другие полимерные материалы. Так, например, из смеси полиизобутилена с полиэтиленом получают прокладочный материал для соединения деталей стеклянных трубопроводов. Эти прокладки из смесей ПОВ-30 и ПОВ-50 обладают высокой химической стойкостью и могут применяться при температурах от —30 до +80° С. [c.207]

    За рубежом распространены покрытия из хлорсульфи-рованного полиэтилена типа хайпалон, обладающего по сравнению с полиэтиленом более высокой химической стойкостью и теплостойкостью, повышенными физико-механическими свойствами, меньшей проницаемостью для газов и водяного пара Хайпалон применяют для обкладки химической аппаратуры, а также в виде покрытий, получаемых напылением и другими методами. [c.216]

    Для снижения окисляемости к полиэтилену добавляют антиоксиданты, например 0,2% (от веса полиэтилена) различных аминов, 2% сажи и др. Для повышения химической стойкости полиэтилена к жидким углеводородам, моющим средствам и другим, улучшения его физико-механических свойств, морозостойкости, температуры размягчения полиэтилен подвергается структурированию (сшивке) обработкой его перекисью дикумола, облучением Tf-лу-чами, электронами, нейтронами и другими методами. [c.107]


Смотреть страницы где упоминается термин Полиэтилен физико-механические свойств: [c.128]    [c.37]    [c.23]    [c.438]    [c.56]    [c.424]    [c.121]    [c.77]   
Переработка термопластичных материалов (1962) -- [ c.551 , c.555 ]

Кристаллические полиолефины Том 2 (1970) -- [ c.250 ]

Справочник по пластическим массам Том 2 (1975) -- [ c.7 , c.8 , c.11 , c.12 , c.15 , c.16 ]




ПОИСК





Смотрите так же термины и статьи:

Полиэтилен механические свойства

Физико-механические свойства



© 2024 chem21.info Реклама на сайте