Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стереохимия методы

    Стереохимия является разделом химии, посвященным изучению расположения в пространстве атомов, составляющих молекулу, а также их особенностей, ведущих к появлению стереоизомеров [1—4]. В этой области выдвигалось множество различных номенклатурных предложений, но значительное упрощение было достигнуто лишь недавно благодаря появлению методов установления абсолютной конфигурации [5] и публикации правила последовательности [6], что позволяет давать названия стереоизомерам в большинстве ситуаций, встречающихся в органической химии. Способы подхода к решению многих простых пространственных соотношений зафиксированы в правилах ШРАС [4], они оказались вполне приемлемыми. Однако недавняя публикация методов, использованных в сводном предметном указателе СА, внесла новые изменения, основные положения которых включены в эту главу (см. с. 165). Полную информацию об этом, а также о других аспектах стереохимической номенклатуры можно найти в цитированной литературе. [c.152]


    На рис. 85 приведен пример использования реакции метиленирования для получения труднодоступных для обычных методов синтеза углеводородов ряда адамантана [123,1491. Решение вопросов стереохимии трициклических углеводородов ряда три-цикло(5,2,1,02.б)декана рассмотрено в работе [114]. [c.303]

    В исследованиях пространственной структуры молекул получил признание метод Гиллеспи, основанный на модели отталкивания электронных пар валентной оболочки (ОЭПВО). Стереохимия молекулы зависит прежде всего от числа связывающих и неподеленных валентных электронных пар. Из многих правил для соединений непереходных элементов основным является утверждение, что электронные пары принимают такое расположение, при котором они максимально удалены друг от друга. Физическим обоснованием этого положения является принцип Паули. [c.104]

    Предлагаемая читателю книга является руководством по теоретической неорганической химии и охватывает широкий круг вопросов квантовая химия, волновая механика, метод молекулярных орбиталей, периодические свойства элементов и их соединений, химическая связь, стереохимия неорганических соединений, комплексные соединения и др. Книга представляет большой интерес как для преподавателей общей и неорганической химии, так и для студентов химических факультетов университетов, химико-технологичес-ких и педагогических высших учебных заведений. [c.4]

    Экспериментальные методы стереохимии [c.12]

    Координационную теорию А. Вернера (1893 г.) можно считать началом неорганической стереохимии, так как она отвечала на вопросы о пространственном расположении молекул и ионов вокруг центрального иона металла. В течение многих лет после создания теории Вернера химики-неорганики занимались получением и описанием большого числа новых комплексных соединений и изучением их стереохи-мического строения. Их выводы основывались главным образом на химических методах изучения, которые, конечно, были несовершенны. Большие [c.191]

    Применение этих экспериментальных и теоретических методов в течение последних тридцати лет привело к накоплению огромного количества информации, так же как и к открытию новых структурных принципов, которые, в свою очередь, привели к лучшему пониманию свойств соединений. Цель этой главы — прежде всего обсудить принципы, лежащие в основе современной стереохимии, и показать, как они могут быть применены в частных случаях. По-видимому, рассмотрение данного вопроса придется ограничить. Например, не будут рассмотрены структуры кристаллических твердых тел, для которых известно по крайней мере четыре типа кристаллических решеток  [c.192]


    Теория кристаллического поля, развившаяся из простой электростатической модели, может быть применена к комплексам для интерпретации и предсказания наиболее выгодных координационных чисел, стереохимии, путей реакций замещения, спектров поглощения, магнитных и термодинамических свойств. На некоторых из этих вопросов следует остановиться более подробно. В частности, будут рассмотрены стереохимия, магнитные свойства, спектры поглощения и термодинамические свойства комплексных ионов. Это отчетливо покажет, что теория кристаллического поля — более удовлетворительный и более общий метод изучения комплексов, чем метод валентных связей. Однако, придавая особое значение орбиталям и электронам центрального атома, теория кристаллического поля неизбежно должна стать менее точной, когда усиливается роль делокализации электронов и орбиталей лиганда, т. е. при возрастании ковалентности связи. [c.264]

    Одним из главных достоинств метода валентных связей является возможность предсказания с его помощью структуры многих комплексных ионов. Если можно определить каким-либо способом, например измерением магнитной восприимчивости, набор гибридных орбиталей, то обычно можно затем установить и стереохимию комплекса. Правда, с помощью этого метода не всегда можно предсказывать пространственную конфигурацию. Действительно, в предыдущем разделе было уже отмечено, что иногда он может ввести в заблуждение относительно стереохимической структуры комплекса. Кроме того, метод валентных связей не объясняет, почему некоторые структуры более выгодны, чем другие. Теория [c.281]

    Применение ЯМР-спектроскопии не ограничивается установлением или же подтверждением химического строения молекул. ЯМР дает возможность решать ряд проблем стереохимии, количественного анализа смесей, кинетики и механизмов быстрых химических реакций, в том числе протонного обмена, таутомерных превращений и другие вопросы. Целые разделы органической и неорганической химии обязаны своим стремительным развитием именно применению спектроскопии ЯМР- Данные спектров ЯМР считаются такими же надежными критериями в оценке структуры, в распознавании и отождествлении химических соединений, как и сведения других физических методов исследования. [c.10]

    Строение большого числа органических и неорганических молекул изучено различными физическими методами (спектроскопическими и дифракционными, измерением дипольных моментов и др.) [к-10], [к-50], и надежно установлены параметры их равновесных конфигураций. В настоящее время формируется стереохимия неорганических соединений. [c.172]

    Успехи в области стереохимии связаны с достижениями теории химической связи и физических методов исследования молекул (спектроскопия, рентгенография, ЯМР и др.). [c.108]

    Важнейшей задачей теоретической стереохимии является описание и предсказание геометрической структуры молекул и образуемых ими частиц (ионов, радикалов, комплексов и др.). В принципе все сведения о молекулярной структуре (длинах связей, валентных и межплоскостных углах) можно получить с помощью прямых расчетов, например по методу МО (гл. 4), проводя серию вычислений [c.136]

    Серьезное внимание автор уделил и промышленным процессам, связанным с получением важнейших органических соединений. Однако большая часть книги, и это естественно, посвящена теоретическим вопросам номенклатуре, стереохимии, классификации реагентов и реакций, типам связей в органических соединениях, основным механизмам реакций, методам очистки и установления строения. Используя множество перекрестных ссылок, для каждого класса органических соединений автор сразу в одной глазе дает все важнейшие реакции. Это значительно облегчает самостоятельную работу с учебником с учетом вечной нехватки времени у учащегося. [c.5]

    Книга посвящена одной из быстро развивающихся областей знания — стереохимии органических соединений. После изложения основных положений этой науки рассматривается стереохимия главных классов органических соединений — алифатических, алицикличе-ских, непредельных, ароматических и гетероциклических. Специальные главы посвящены стереохимии азота, других элементов V и VI групп Периодической системы, стереохимии комплексных соединений. Во всех главах большое внимание уделено конформационным проблемам, результатам исследования пространственного строения современными физико-химическими методами, пространственным особенностям реакций. [c.4]

    В классической стереохимии наиболее важными были разделы, связанные с зеркальной (оптической) изомерией. Это отразилось и на содержании книги Основы стереохимии , в которой много места уделено оптически активным веществам. В настоящее время центр тяжести стереохимии явно сместился в область исследования современными физическими методами тонких деталей пространственного строения молекул (конформационные проблемы), а также изучения влияния пространственного строения на реакционную способность (динамическая стереохимия). С развитием спектрополяриметрического метода исследования совершенно иной характер приобрели и разделы, относящиеся к оптической активности. Все эти сдвиги нашли отражение в построении и содержании новой книги. [c.11]


    Прежде всего довольно кратко, но достаточно полно, на современном уровне, излагаются основные положения стереохимии. Специальная глава посвящается методам получения стереоизомеров. В отдельной главе освещаются и методы определения конфигурации. Эти главы составляют как бы первую фундаментальную часть изучения стереохимии. [c.11]

    Автор тщательно следил за тем, чтобы его собственная область исследований — изучение оптически активных веществ спектрополяриметрическим методом, не заняла в книге непомерно большого места это хотя и важный метод сте-реохимического исследования, но все же лишь один из многих методов, используемых ныне в стереохимии. Точно так же и оптической активности уделяется меньше внимания, чем в книге Основы стереохимии , поскольку иначе было бы невозможно включить новый материал. [c.12]

    Именно для истолкования природы таких изомеров — зеркальных и геометрических — создал в 1874 г. Вант-Гофф представление о тетраэдрическом углеродном атоме. При этом единственным методом обнаружения зеркальных изомеров являлась оптическая активность. Так исследование оптически активных веществ стало одной из важнейших областей стереохимии. Вместе с исследованием геометрической (г ыс-/транс-) изомерии оно стало главным содержанием статической стереохимии, предмет которой — изучение связи пространственного строения веществ с их физическими свойствами. [c.85]

    Использование новых физических методов исследования позволило существенно углубить представления о пространственном строении молекул, позволило подметить новые, ранее неизвестные особенности. Важнейшим из них оказалось возникновение понятия о поворотной изомерии (конформации) органических молекул. Это представление легло в основу истолкования большинства наблюдений, сделанных как в области статической, так и в области динамической стереохимии. [c.85]

    Все это привело к тому, что изучение особых точек в молекуле (пространственной конфигурации вокруг асим-метрически.х атомов илн двойных связей) уступило место изучению пространственного строения всей молекулы в целом. Потеряло свое исключительное значение и определение оптической активности оно стало лишь одним из многих методов исследования стереохимии вообще. Современная стереохимия обязана своим развитием широкому использованию физико-химических методов исследования. [c.86]

    Важнейшим методом исследования в органической химии вообще и в стереохимии в частности стал ядерный магнитный резонанс. Стереохимическую информацию можно получить как из величин химических сдвигов, так и из констант спин-спинового взаимодействия. [c.86]

    Образование ковалентной связи можно рассматривать как взаимнсЗе перекрывание двух атомных орбит первоначально разделенных атомов с возникновением молекулярной орбиты в образовавшейся молекуле. Поскольку молекулярная орбита находится в определенном отношении к двухатомным орбитам, из которых она возникла, представляется разумным постулировать, что свойства связи—ее направление, длина, прочность и т. д.—также находятся в определенном отношении к свойствам атомных орбит двух разделенных атомов. В многоатомных молекулах образование ковалентной связи можно трактовать с помощью либо метода мо--лекулярных орбит Гунда—Мулликена, либо с помощью метода валентной связи (локализованных пар) Полинга—Слэйтера. Оба метода являются приближенными, так как осуществить точные квантово-механические расчеты многоатомных молекул пока не представляется возможным. При обсуждении вопросов стереохимии метод локализованных пар имеет некоторые преимущества и поэтому будет принят нами при последующем рассмотрении. Более подробное изложение вопроса и указание оригинальной литературы приведено в монографии Коулсона ( oulson, 1952а). [c.247]

    Разделение и последующий анализ смесей геометрических изомеров — другое потенциально важное применение газовой хроматографии в стереохимии. Метод этот особенно эффективен для разделения смесей изомеров с весьма незначительными различиями в структуре. Впервые он был применен в координационной химии соединений металлов для разделения цис- и гракс-изомеров трифторацетилацетоната хрома(П1) [12]. Если бидентатные или ноли-дентатные лиганды несимметричны, образованные такими лигандами комплексы существуют обычно во многих изомерных формах. Нанример, синтез октаэдрических комплексов с несимметричными бидентатными лигандами будет приводить к образованию двух геометрических изомеров [7, 15—17]. Два изомера трифторацетилацетонатных комплексов показаны на рис. 5.2. Структуры даны в упрощенном виде с тем, чтобы яснее показать факторы симметрии, обус.ловливающие образование изомеров. В цис-шо- [c.143]

    Стереохимнческие представления играют все большую роль в органической химии, особенно с тех пор как начала развиваться конформационная теория. Однако в области органического гетерогенного катализа стереохи-мические подходы распространялись значительно медленнее. Между тем сочетание привычных каталитических понятий и концепций со стереохимическими представлениями, в первую очередь конформационным анализом, весьма перспективно для понимания тонкого механизма гетерогенно-каталитических реакций. Подтверждением этой точки зрения могут служить отдельные работы, приведенные в ряде обзоров [1—10], где в той или иной мере применен вышеупомянутый подход. Используя этот подход, часть альтернативных механизмов некоторых реакций удалось сразу отбросить, поскольку они не удовлетворяли требованиям стереохимии. Наиболее эффективно стереохимические методы могут быть использованы, и действительно используются вместе с различными экспериментальными приемами. [c.9]

    Одним из первых успехов только что нарождавшейся стереохимии Циклических соединений явилось создание теории напряжения Байера, успешно и красиво объяснившей неустойчивость циклопропана и циклобутана и высокую стабильность соединений ряда цикло-пентана. Байер обратил внимание на то, что в трехчленных и четырехчленных кольцах по очевидным геометрическим причинам валентные углы углерода (109°28 ) должны уменьшиться до 60 и 90°, соответственно, создавая в результате значительное напряжение молекул. Наоборот, в пятичленном кольце циклопентана по той же причине углы почти точно соответствуют валентному углу. Однако дальнейшее развитие теории встретилось с неожиданными трудностями. Плоские, по представлениям Байера, кольца циклогексана, циклогептана и т. д. должны были бы характеризоваться растущим с увеличением кольца напряжением, но оказалось, что они весьма устойчивы. Особенно устойчивыми оказались циклогексан и его производные, а также синтезированные Ружичкой соединения с числом атомов С в цикле от 15 до нескольких десятков. По теории напряжения существование таких соединений вообще считалось невозможным. Правда, в дальнейшем Заксе и Мор показали, что циклогексан может быть свободен от байеровското напряжения, если его атомы углерода расположены не в плоскости, а в пространстве. Они предложили две такие пространственные модели, получившие названия кресла XI и ванны, или лодки, XII. Казалось бы, эти формы совершенно равноценны и должны отвечать двум изомерным цик-логексанам, которые, возможно, трудно или совсем неразделимы. Однако в дальнейшем различными физическими методами (с помощью спектров комбинационного рассеяния [571, ИК-спектроскопин [c.37]

    Стереоспецифический синтез углеводородов, осуществленный по реакции метиленирования, сыграл исключительно важную роль для понимания стереохимии цикланов, так как позволил точно установить пространстьенную конфигурацию стереоизомеров, образующих тот или иной пик на хроматограммах смесей стереоиаомеров, получаемых обычным синтезом. Можно без преувеличения сказать, что без этого метода две первые главы это11 монографии в значительной мере утратили бы свой интерес. [c.292]

    Современная органическая химия - наука, развивающаяся быс трыми темпами. Последние достижения теоретической органической химии (исследование механизмов реакций, вопр<)сы стереохимии, внедрение новейших инс фументальных физико-химических методов, анализ и целенаправленный синтез сложнейших органических структур позволяют не только иначе взглянуть на известные экспериментальньи данные, но и по-новому оценить сам предмет органической химии. [c.9]

    За последние годы при изучении стереохимии оптически активных веществ получили развитие различные спектрофотометрические методы исследования, основанные на явлениях, связанных с поляризацией света. Оптическая активность комплексных соединений проявляется в том случае, когда расположение лигандов в координационной системе хирально , т. е. в ней отсутствует зеркально-поворотная ось, вращение вокруг которой переводит молекулу в соответствующий стереоизомер. Линейно-поляризованный свет можно представить себе как совокупность двух циркулярно-поляризованных волн с одинаковыми частотами и амплитудами. Тогда оптическая активность обусловлена тем, что право- и левополяризованный свет распространяется, в веществе с разной скоростью. Угол поворота плоскости поляризации а пропорционален разности коэффициентов преломления право- и левополяризованного света  [c.129]

    Независимо от способа получения RN2+ слишком неустойчив, чтобы его можно было выделить [307], и реагирует, вероятно, по механизму SnI или Sn2 [308]. На самом деле механизм точно не установлен, так как данные, полученные при изучении кинетики, стереохимии и продуктов, трудно интерпретировать [309]. Если образуются свободные карбокатионы, они должны давать то же соотношение продуктов замещения, элиминирования и перегруппировки и т. д., что и карбокатионы, генерированные в других реакциях SnI, но часто это не так. Постулировано [310], что горячие карбокатионы [несольватированные и (или) химически активированные], которые могут сохранять свою конфигурацию, образуют ионные пары, в которых противоионом является ОН- (или OA и т. д. в зависимости от метода генерирования диазониевого иона) [311]. [c.83]

    Было бы, однако, непростительным заблуждением отрицать на этом основании роль физических методов в прогрессе органической химии, в частности стереохимии. Подтверждая известную общую модель, современные физические методы дают в то же время гпрт"" штгг пгТ 1Дьную картину строения органических молекул. [c.37]


Смотреть страницы где упоминается термин Стереохимия методы: [c.52]    [c.256]    [c.47]    [c.68]    [c.91]    [c.286]    [c.47]    [c.152]    [c.9]    [c.192]    [c.193]    [c.296]    [c.5]    [c.438]    [c.12]   
Теоретическая неорганическая химия (1969) -- [ c.192 , c.193 ]

Теоретическая неорганическая химия (1971) -- [ c.185 , c.186 ]

Теоретическая неорганическая химия (1969) -- [ c.192 , c.193 ]

Теоретическая неорганическая химия (1971) -- [ c.185 , c.186 ]




ПОИСК





Смотрите так же термины и статьи:

Методы классической стереохимии

Методы уточнения стереохимии белков

Стереохимия

Стереохимия экспериментальные методы



© 2025 chem21.info Реклама на сайте