Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Понятие о катализаторах и каталитических процессах

    Основные положения и законы химической кинетики, а также метод переходного состояния могут быть применены при описании кинетики гетерогенно-каталитических процессов. Особенность такого описания здесь заключается в известной неопределенности в понятии катализатора и химического соединения молекулы реагирующего вещества с катализатором. Если в гомогенном катализе катализатор находится в молекулярном состоянии, которое может быть строго описано термодинамическими функциями состояния А Я, 5, ДО, то в гетерогенном катализе не всегда ясно, что принимать за молекулярную единицу катализатора. Атомы и молекулы, находящиеся на поверхности раздела фаз, не тождественны атомам и молекулам, находящимся в объеме фазы. Их термодинамические функции состояния отличны от термодинамических функций молекул объемной фазы. В настоящее время нет достаточно надежных методов определения или расчета активности Д Я, 5 и ДО молекул, находящихся на границе раздела фаз. Поэтому при выражении концентрации или активности катализатора, продуктов взаимодействия молекул субстрата с катализатором приходится прибегать к условным понятиям концентрации катализатора, выражая ее через свободную, незанятую поверхность. [c.637]


    Общие понятия и определения. Явление катализа можно определить как зависимость скорости реакций от присутствия веществ — катализаторов, которые на отдельных стадиях химического процесса вступают во взаимодействие с реагирующими молекулами и резко изменяют скорость реакции, оставаясь в химически неизмененном виде. Катализатором реакции является вещество — атомы, молекулы, ионы или поверхности раздела фаз, которое взаимодействует с молекулами реагирующих веществ, изменяет скорость химической реакции и выделяется на последующих стадиях в химически неизмененном виде. Большое практическое и теоретическое значение имеют катализаторы, повышающие скорости химических реакций. Иногда нх назьшают положительными катализаторами. Катализаторы, понижающие скорость химической реакции, называют отрицательными катализаторами. Все каталитические процессы с учетом их специфичности можно разбить на три группы. [c.616]

    Основные положения и законы химической кинетики, а также метод переходного состояния могут быть применены при описании кинетики гетерогенно-каталитических процессов. Особенность такого описания здесь заключается в известной неопределенности в понятии катализатора и Х1 мического соединения молекулы реагирующего вещества с катализатором. Если в гомогенном катализе катализатор находится в молекулярном состоянии, которое может быть строго описано термодинамическими функциями состояния 5, АО, то [c.637]

    Основные научные исследования относятся к химической термодинамике и кинетике. Открыл (1881— 1884) законы, устанавливающие зависимость относительного состава компонентов в газовой и жидкой фазах растворов от давления пара и температуры кипения двойных жидких систем (законы Коновалова). Создал (1886) основы теории перегонки жидких смесей. Развил (1900) представления о критическом состоянии в системах жидкость — жидкость, указав области гомогенности и расслоения. Экспериментально обосновал (1886— 1900) идеи о химической природе растворов. Детально исследовал гетерогенные каталитические процессы, впервые ввел (1885) понятие активной поверхности, имеющее важное значение в теории гетерогенного катализа, и указал на роль химического взаимодействия реагентов с катализатором при активации молекул. Сформулировал (1886—1888) представления об автокатализе и на год ранее В. Ф. Оствальда вывел (1887) формулу для определения скорости автокаталитических реакций (уравнение Оствальда — Коновалова). [c.251]


    В связи с необходимостью основываться на полной модели центра катализа в об цей теории классического катализа недопустим отрыв понятий катализатора и его каталитических овойств от понятий конкретного каталитического процесса. В частных же теориях классического катализа иногда высказываются совершенно неправильные с точки зрения каталитической динамики мнения о существовании особого свойства катал изатора — каталитической активности безотносительно к конкретной реакции, в то время как каталитическая активность является производной характеристикой природы центра катализа, обусловленной в свою очередь и особенностями природы компонентов каталитической реакции. Для разных реакций центры катализа одного катализатора Могут иметь разный состав и строение. [c.248]

    Применение методики, разработанной М. М. Дубининым и сотрудниками, показало ее пригодность и для цинк-хромового катализатора. Можно было получать характеристики микропор и В как для чистой микропористости, так и при наличии переходных пор. Однако этих характеристик все же недостаточно, чтобы полностью охарактеризовать тонкие поры катализатора. Для протекания каталитического процесса необходим непосредственный контакт реагирующих молекул с катализатором. Поэтому величина удельной поверхности , характеризующая зону протекания реакции, весьма существенна также в случае микропор. Понятие удельной поверхности в данном случае в какой-то мере условно и эквивалентно максимальному числу молекул, которое может разместиться в микропорах при непосредственном контакте с катализатором. [c.323]

    В монографии изложены на современном уровне основные положения химической кинетики применительно к гетерогенному катализу. Кратко рассмотрены роль химической кинетики и исторические этапы ее развития в катализе, проанализированы кинетические стороны некоторых теорий и изложены фундаментальные понятия кинетики. Подробно обсуждены теория абсолютных скоростей реакций, стадийность каталитических процессов и приложение к ним теории сложных стационарных реакций. Рассмотрены кинетические аспекты селективности и представления о процессах в реальных поверхностных слоях. Уделено внимание влиянию реакционной системы на свойства катализаторов и проблемам нестационарной кинетики, макрокинетическим факторам, особенно закономерностям реакций Б разных областях и критериям влияния переноса массы и тепла. [c.2]

    Прежде чем перейти к рассмотрению данной проблемы, имеет смысл определить понятие катализатор и новый катализатор . Необходимость такого определения обусловлена тем, что при характеристике катализатора часто имеют в виду только его каталитически активный компонент, а новым считают лишь такой катализатор, который содержит не применявшийся (для данной реакции) каталитически активный компонент. Такое применение этих терминов в определенной степени рационально, особенно при рассмотрении теоретических проблем катализа. Однако при обсуждении вопросов создания и промышленного применения катализаторов указанным терминам обоснованно придают несколько иной смысл. В этом случае катализатором считают вещество, которое обладает комплексом свойств, позволяющим использовать его для ускорения химического процесса. [c.4]

    Понятие скорости химической реакции для гетерогенно-каталитических процессов имеет другой смысл, чем для некаталитических и гомогенно-каталитических реакций. Для них эта скорость определяется как количество вещества, реагирующего в единицу времени на поверхности катализатора, площадью 5, т. е. [c.206]

    Понятие о катализе. Гомогенный и гетерогенный катализ. Катализом называется явление изменения скорости реакции под воздействием небольших добавок специфических веществ, количество которых в ходе реакции не изменяется. В каталитических процессах скорость основной реакции может и увеличиваться и уменьшаться. В соответствии с этим каталитическое действие может быть положительным и отрицательным. Вещества, ускоряющие реакцию, называются катализаторами, а замедляющие — ингибиторами. [c.232]

    Исходя из того, что на протекание гетерогенных каталитических процессов влияют такие параметры, как размер и форма пор, коэффициенты диффузии реагирующих веществ и продуктов реакции, скорость реакции и размер частицы катализатора, было предложено [75] ввести понятие фактора эффективности при парофазных реакциях. Фактор эффективности равен отношению фактической скорости превращения в целевой продукт к идеальной скорости превращения для случая, когда вся поверхность частицы катализатора обладает одинаковой эффективностью. Этот фактор является функцией модуля, вычисленного на основании эффективного диаметра частицы, среднего радиуса пор, коэффициента диффузии и константы скорости реакции. [c.147]


    Настоящая книга посвящена физико-химическим аспектам гетерогенного катализа. Изложение материала ведется в логической последовательности — от основных понятий к методам изучения поверхности катализатора и адсорбированных частиц, от этих данных и кинетики гетерогенно-каталитических реакций к представлениям об их механизмах и природе активных центров катализаторов. Все. эти вопросы рассматриваются главным образом на примерах промышленно важных катализаторов и каталитических процессов. [c.5]

    Понятие о катализаторах и каталитических процессах. Катализаторы и сокатализаторы процессов полимеризации и алкилирования. Механизм действия катализаторов. [c.13]

    Различают понятия физической и химической адсорбции. Так как проблема адсорбции в каталитических процессах связывалась с механизмом взаимодействия между реагентами и катализатором, ускоряющим реакцию, то следует рассмотреть различия между химическими и физическими комбинациями компонентов. В общем, селективная химическая адсорбция отличается от физической или молекулярной адсорбции. Химическая адсорбция происходит за счет валентных сил, а физическая адсорбция за счет сил Ван-дер-Ваальса, характеризуемых капиллярными и критическими константами газов. Типичная вандерваальсовская адсорбция при низких температурах [89] происходит лучще, чем при высоких, тогда как химическая адсорбция, зависящая от скорости реакции, ускоряется с повышением температуры. Так как наиболее медленным процессом в серии последовательных процессов может быть активированная адсорбция, образование раствора, образование соединений и любая комбинация их, то считают, что скорость адсорбции сама по себе не является критерием для скорости адсорбционного каталитического процесса. [c.106]

    Химическая реакция идет тем легче, чем слабее связь, которая должна быть разрушена во время процесса. Поляни [71] называл гетерогенный катализ адсорбционным, когда он вызывается адсорбционным действием каталитической стенки. Он обратил особенное внимание на то, что понятие адсорбционный катализ не охватывает тех случаев, в которых катализатор химически соединяется с реагирующим веществом, а также каталитические процессы такого типа, как реакция взаимодействия водорода и кислорода на металлических поверхностях, потому что эти газы на металлах адсорбируются анормально. [c.108]

    Статья Вейса посвящена полифункциональному катализу, т. е. сложным гетерогенно-каталитическим процессам, в которых отдельные стадии катализируются различными веществами или разными центрами поверхности. Хотя общие представления о смешанных катализаторах и о сложных процессах имеются уже сравнительно давно, разработка теоретических вопросов в этой области началась и у нас, и за рубежом лишь недавно. В настоящее время это направление теоретических и прикладных работ — одно из важных и многообещающих. Поэтому представляет значительный интерес сделанная Вейсом попытка в известной мере систематизировать материал, более точно сформулировать ряд понятий, выявить некоторые кинетические и термодинамические закономерности и рассмотреть с этих позиций отдельные конкретные процессы. В этой статье освещаются вопросы о промежуточных соединениях и квази-промежуточных продуктах, о переносе вещества в многостадийной реакции, о селективности полифункциональных катализаторов, термодинамике стадийных процессов. Из отдельных процессов рассмотрены изомеризация и гидрокрекинг парафиновых углеводородов, реформинг нефтяных фракций, дейтероводородный обмен у углеводородов. [c.5]

    В понятии катализ объединяют явления, сильно различные по способу действия катализатора. Однако общим для всех каталитических процессов является то, что катализаторы могут .ч-менять только скорость реакции, но не предел ее возможного [c.335]

    Получил (1846) коллодий. Наибольшее внимание, однако, уделял вопросам катализа. Занимался как гетерогенным и гомогенным, так и биокатализом. Выдвинул положение, согласно которому каждая химическая реакция представляет собой сумму последовательных процессов. В результате своих первых экспериментальных наблюдений за ходом катализа пришел к выводу (1843) о потере активности катализатора. Опубликовал (1844) работу Вклад в физическую химию , где изложил свои представления о катализе и подверг критике понятие каталитической силы , предложенное Й. Я. Берцелиусом. Подверг критике также воззрения М. Фарадея на адсорбцию как чисто физическое явление. Утверждал, что адсорбция зависит не только от величины поверхности, но и от природы соответствующего вещества и что каталитический процесс есть особая форма химического процесса. Исследовал каталитические реакции разложения и окисления, а также некоторые природные процессы — тление, брожение, гниение. Изучил каталитическое действие разных металлов, их окислов и перекисей. [c.570]

    Понятие полифункциональный катализ объединяет все индивидуальные типы катализа, обсуждавшиеся выше. Существует довольно много синтетических полифункциональных катализаторов. Каталитические системы более высокого порядка функционируют в ферментах. В биологических катализаторах сочетаются общий кислотный и общий основной катализ, общий основной — общий основной катализ, а также нуклеофильный-электрофильный и нуклеофильно-общеосновной катализ. С другой стороны, пока неизвестны процессы, в которых бы сочетался электрофильный и общий кислотный катализ. [c.279]

    ПОНЯТИЕ О КАТАЛИЗАТОРАХ И ОБЩИЕ СВЕДЕНИЯ О КАТАЛИТИЧЕСКИХ ПРОЦЕССАХ В НЕФТЕПЕРЕРАБОТКЕ [c.7]

    При регулировании пористой структуры катализаторов необходимо учитывать ее влияние на такую важную для практики характеристику, как механическая прочность. В соответствии с увеличением интенсивности каталитических процессов, применением контактных аппаратов с движущимся катализатором, псевдоожиженным слоем, регулярным расположением катализатора и т. п. требования к механической прочности катализаторов быстро возрастают. Надо отметить, что само понятие механической прочности или устойчивости катализаторов определено недостаточно четко и методы ее определения не всегда отвечают реальным условиям работы катализаторов. При увеличении объема пор механическая прочность, как правило, снижается вследствие уменьшения числа контактов между первичными кристаллитами или полимерными молекулами, образующими катализатор. В каждом случае необходимы поэтому поиски компромиссного решения, при котором при удовлетворительной механической прочности объем пор был бы достаточно велик для обеспечения требуемой избирательности и возможно более высокой активности. В связи с этим очень большой интерес представляют попытки повышения механической прочности без уменьшения пористости, с использованием методов физико-химической механики, развиваемых школой академика П. А. Ребиндера. [c.18]

    Теперь нам следует дать современное и наиболее общепринятое определение катализа, а затем и некоторую общую классификацию каталитических процессов, так как именно с этого начинается любая точная наука. Как известно, физика — это то, чем занимаются физики (то же самое можно сказать и о химии) . Следуя этому наставлению Бергмана, можно было бы ограничиться утверждением, что катализ — это то, чем занимаются и химики и физики . Но, естественно, такого шутливого объяснения недостаточно, и со времен Берцелиуса давалось множество научных определений понятию катализ . На наш взгляд наилучшее определение сформулировано Г. К. Боресковым Феноменологически катализ можно определить как возбуждение химических реакций или изменение их скорости под действием веществ — катализаторов, многократно вступающих в промежуточные химические взаимодействия с участниками реакции и восстанавливающих после каждого цикла промежуточных взаимодействий свой химический состав . [c.8]

    ПОНЯТИЕ О КАТАЛИЗАТОРАХ И КАТАЛИТИЧЕСКИХ ПРОЦЕССАХ [c.13]

    В книге изложены основные сведения ио гидродинамике, теплообмену и массообмену применительно к каталитическим процессам в кнпящем слое. Даны основные понятия о катализе газов. Описаны технологические процессы в кипящем слое катализатора по результатам их исследованпй и промышленного применения. [c.2]

    Если исходить иэ количества продукта, производимого в сутки, окисление двуокиси серы в серный ангидрид, безусловно, следует отнести к числу наиболее важных процессов каталитического окисления в газовой фазе. Еще в 1831 г., т.е. до того, как Берцеллиус ввел понятия катализатор и "катализ", Филлипс показал, что платина способна катализировать эту реакцию. Б 1898 г. Хазенбах и Клемм описали промьпи-ленный процесс с использованием в качестве катализатора окиси железа. В следующем году Майерс показал, что хоро-щим катализатором является и пятиокись ванадия. [c.275]

    Но после того как Тейлор [12] ввел в гетерогенный катализ обоснованное опытом понятие активного каталитического центра (АКЦ), создались предпосылки к синтезу представлений теории промежуточных соединений с конкретными данными о строении поверхности твердого тела. Первый шаг в этом направлении был сделан Баландиным [13] в мультиплетной теории, установившей связь между геометрическим строением катализируемой молекулы и геометрией расположения поверхностных атомов катализатора, и впервые поставившей вопрос о том, что активный центр должен иметь определенный числовой состав и определенную геометрическую конфигурацию (принцип геометрического соответствия). Позднее Кобозев [14] в теории активных ансамблей дал метод определения числового состава активного центра и его производительности на основании статистического анализа экспериментальных данных по адсорбционным катализаторам. По Кобозеву [15], числовой состав АКЦ определен числом разрывающихся и образующихся на нем связей в данном процессе. Этими концепциями вместо качественного тейлоровского описания в понятие АКЦ внесена химическая и физическая определенность, позволяющая (поскольку расширены и ко нкретизирОва-ны сведения о находящемся в поверхностном слое катализатора компоненте АПС—АКЦ) по-новому подойти к структуре и свойствам АПС, т. е. вернуться на новой основе к ряду положений теории промежуточных продуктов. [c.67]

    Понятие подбора и роль в нем теории. Необходимость концентрации значительных сил на разработке научных основ подбора катализаторов получила широкое признание среди советских каталитиков. При разработке этой проблемы следует учитывать многообразие задач различной степени сложности, объединяемых понятием подбор катализаторов . Простейшей из них (табл. 1) является выбор из числа известных для определенной реакции катализаторов одного — оптимального для данных условий. Самым сложным следует считать синтез и конструирование систем для процессов новых типов, в осуш ествлении которых недостаточно эффективны или же совершенно неэффективны все известные катализаторы и для которых нет возможности использовать аналогии с другими освоенными каталитическими процессами. [c.15]

    Гомогенные реакции в твердых веществах редко встречаются, химические изменения, в которых участвуют твердые вещества, происходят обычно на их поверхности, а также у центра зарождения новой фазы, где комбинируются химическое превращение и рост кристалла [247]. Единственная, еще нерассмотренная разновидность гомогенных систем в катализе, —это системы, компоненты которых находятся в жидком состоянии или в растворе (табл. 58 — 64). Предложено [421] классифицировать гомогенный катализ на непосредственный или химический и косвенный или катализ с участием среды. Участие катализатора в процессе не отображается стехиометрическим уравнением, и его влияние зависит от образования промежзт очных молекулярных комплексов, между тем как каталитически действующая среда влияет на скорость реакции, нарушая условия, от которых зависит данная реакция, такие, например, как образование комплексов или их диссоциация. Характер среды или растворителя, — это фактор, влияющий на условия каталитической реакции. Предполагают, что действие прямого катализатора подчиняется закону химического действия масс, так как он реагирует химически, влияние среды — непрямых катализаторов, которые практически могут принимать участие всей массой, интерпретируется иначе. По предположению Розанова, относительное изменение константы скорости реакции пропорционально изменению концентрации каталитически действующей среды. Розанов, обобгцая понятие влияния растворителя, выразил его математически уравнением  [c.194]

    Простое сопоставление представлений теории с экопериментом показывает, что большие скорости каталитических процессов и соответственномалые энергии активации не могут быть удовлетворительно объяснены,, если принять существование неразветвленных цепей без каких-либо дополнительных предположений о причинах облегчения акта зарождения, цепей. В то же время, если предположить, что процесс зарождения свободных валентностей на катализаторе действительно по какой-то причине-облегчен, то возникает другая трудность, связанная с вырождением цепной реакции в простой радикальный процесс,—длина цепи при этом оказывается меньше единицы, и само понятие цепи теряет в этом случае-смысл. [c.370]

    Основные научные исследования относятся к кинетике и математическому моделированию каталитических процессов, созданию теоретических основ химической технологии. Совместно с Г. К. Бореско-вым впервые разработал (1961) принципы математического моделирования каталитических процессов для проектирования и оптимизации промышленных реакторов. Развил (1960—1970) теорию математического моделирования со специфическими понятиями и методами решения проблем масштабного перехода, в частности обосновал (1969—1971) метод многоуровне вых моделей. Разработал матема тическую модель процесса окисли тельного дегидрирования бутиле нов. Предложил ряд усовершен ствований реакторов с псевдоожи женпым слоем катализатора. Осу [c.466]

    Если реакция вдет на поверхности твердого тела, то электроны твердого тела оказываются вовлеченными в каталитический процесс. При этом знаки заряда поверхности изменяются так, как будто электроны перешли от катализатора к адсорбату или наоборот. Однако понятие "электронный переход" в катализе имеет следующий смысл. Если, на полупроводнике р -тгпа адсорбируется акцепторная молекула (кислород, например), то она образует в запрещенной 8.0Н8 свой локальный энергетический уровень, на котором тона-лизуется электрон (рис.90). Тогда на освободившийся уровень пе реходит электрон из заполненной зоны и увеличивается количество дырок в валентной зоне. Формально это выглядит так, как если бы электрон перешел к 02 0 е - 0 +0. [c.279]

    Каталитические процессы начинаются с взаимодействия молекул исходных веществ с катализаторами. В тех случаях, когда катализаторы — твердые тела, а реагирующие вещества находятся в газообразном или в жидком состоянии, это взаимодействие начинается с адсорбции на поверхности катализатора молекул всех или части веществ, вступающих в реакцию. Но это утверждение имеет слишком общий характер для вывода механизмов катализа. Понятие адсорбции объединяет процессы самого различного характера, проявляющиеся в захвате молекул или их частей поверхностью твердых тел Один предельный тип — это неспецифическая физическая , или молекулярная, адсорбция под действием когезионных сил Лондона. Эти силы обусловлены существованием у любых атомов, свободных или объединенных в кристаллы или в молекулы, в любом фазовом состоянии особых небольших индукционных дипольных моментов, обусловленных существованием нулевой энергии. Эти взаимодействия между каждой парой атомов независимы, и для молекул и кристаллов суммируются. Потенпиал взаимодействия у любой пары атомов уменьшается с расстоянием пропорционально шестой степени V = соп81/г . При аддитивном [c.50]

    В 1930 г. А. Г. Церьер [95] высказал интересное соображение о том, что при каталитическом процессе окисления углеводородов настоящий катализатор сам образуется в начале реакции. Это положение блестяще подтверждается исследованиями В. К. Цысковского [90] реакции окисления керосиновых фракций, Н. М. Эмануэля на примере окисления нормального декана молекулярным кислородом [96] и Б. К. Зейналовым процессов окисления нормального гексадекана [97] и парафинистого дистиллята 71] кислородом воздуха. Из работ названных авторов вытекает, что гомогенные катализаторы как инициаторы реакции окисления выполняют свои функции лишь в течение индукционного периода, после чего, выпадая в осадок, прекращают свое инициирующее влияние. Поэтому следует считать устаревшим понятие о том, что катализатор принимает деятельное участие в течение всего периода реакции окисления, так как он лишь ускоряет образование первичных продуктов (радикалов), вызывающих цепную окислительную реакцию. Таким образом, как указывает Н. М. Эмануэль [98, в цепных реакциях окисления углеводородов имеют место макроскопические стадии, в которых функции катализатора изменяются. [c.70]

    Каковы бы ни были конкретные взгляды на механизм катализа, обычно признается существование активных центров на поверхности катализатора. Однако имеется и другая точка зрения. Например, Г. К- Боресков считает, что активных центров не существует и каталитическая активность является свойством, присущим всей поверхности твердого тела. Отсюда следует, что активность прямо пропорциональна общей поверхности катализатора и зависит только от го химического состава. Поэтому катализаторы одинакового химического состава должны иметь постоянную удельную активность. Для некоторых металлических катализаторов такая точка зрения подтверждается опытными данными. Однако в целом это представление противоречит огромному экспериментальному материалу по отравлению и спеканию катализаторов (установленной неоднородности поверхности многих активных систем и неравноценности понятий адсорбционной и каталитически активной части поверхности, данным о каталитической активности катализаторов на носителях). Если принять точку зрения Г. К. Борескова, то прищлось бы оставить необъясненным значительное количество экспериментальных фактов, обнаруженных при изучении гетерогенных каталитических процессов. [c.318]

    В 1814 году петербургский химик К. Кирхгоф обнаружил, что разбавленные кислоты способны превращать крахмал в сахар, и этот процесс резко ускоряется в пр.исутствии какого-то вещества, содержащегося в ячменном солоде. Впоследствии (1833 г.) это вещество получило название диастаза и одно время все ферменты называли диастазами . Праетически в эти же годы знаменитый шведский химик Берцелиус, впервые четко сформулировавший Понятие о катализе как ускорении химической реакции, заметил аналогию между ферментативным превращением сахара при дрожжевом брожении и каталитическими процессами на этой осйове он предположил, что ферменты являются биологическими катализаторами. Поэтому будет правильно сказать, что современное учение о ферментах и наука о каталитических превращениях веществ имеют общие истоки и развивались, по существу, одновременно, дополняя и обогащая друг друга. Все это лишь подчеркивает значение ферментов как уникальных биорегуляторов. [c.32]

    Первоначальные успехи зонной теории в объяснении электропроводности твердых тел привели прежде всего к укреплению более старого представления о том, что изоляторы и металлы заметно отличаются по своей собственной специфичности при этом полупрово)] ники занимают промежуточное положение. Окислы — изоляторы с устойчивой заполненной катионной оболочкой (например, MgO, AI2O3, SiOj) проявляют гораздо меньшую активность в-окислительно-восстановительных реакциях, чем проводники. Они сами или их полиморфные формы с небольшим количеством связанной воды обнаруживают каталитические свойства, близкие к свойствам кислот и оснований в органической химии. Отсюда возникли схемы, в которых изоляторы рассматриваются как льюисовские основания (доноры электронной пары) или кислоты (акцепторы электронной пары), или как кислотно-основные соединения с полярными сокатализаторами. Для проводников, естественно, были предложены модели, включающие переход отдельных электронов, которые привели к теориям заряженного слоя в хемосорбции. Образование ковалентной связи предполагали или на основании эмпирических измерений прочности связи, или просто из формальных соображений. Подобно тому, как зонная теория с ее системой понятий в конечном счете повлекла к ошибкам при описании свойств проводников, она также не позволила удовлетворительно классифицировать катализаторы и ограничилась лишь поверхностной интерпретацией каталитических процессов. [c.41]


Смотреть страницы где упоминается термин Понятие о катализаторах и каталитических процессах: [c.339]    [c.356]    [c.185]    [c.219]    [c.282]   
Смотреть главы в:

Полимеризация и алкилирование углеводородов -> Понятие о катализаторах и каталитических процессах




ПОИСК





Смотрите так же термины и статьи:

Процесс каталитический



© 2025 chem21.info Реклама на сайте