Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пространственное строение белковых веществ

    Еще недавно стереохимия была одной из самых отвлеченных теоретических областей. Ныне она приобрела и большое практическое значение. Было установлено, что свойства полимеров существенно зависят от их пространственного строения. Это относится как к синтетическим полимерам (полистирол, полипропилен, синтетический бутадиеновый и изопреновый каучуки), так и к природным высокомолекулярным соединениям — полисахаридам, белкам, нуклеиновым кислотам. Известно также, что пространственное строение оказывает большое влияние на физиологические свойства веществ. Сказанное определяет значение стереохимии для химии и технологии полимерных материалов, для биохимии и молекулярной биологии, для фармакологии и медицины. [c.13]


    Пространственное строение решающим образом влияет на свойства и биологические функции органических веществ, участвующих в процессах жизнедеятельности. Большинство таких веществ оптически активны и встречаются в природе обычно в одной из антиподных форм это относится к белкам и образующим их аминокислотам, нуклеиновым кислотам, сахарам, стероидным гормонам, природным оксикислотам, ферментам, витаминам и др. Свойства природного каучука тесно связаны с определенной геометрической конфигурацией его полимерной цепи. Еще большее значение имеет в рассматриваемой области конформация, в особенности если речь идет о таких полимерах, как белки и нуклеиновые кислоты. Ни один вопрос биохимии не может быть решен на современном уровне без тщательного учета стереохимических факторов. [c.623]

    Тем не менее почтенный Кольбе оказался неправ, и стереохимия стала важнейшим разделом науки о веществе. Особенно возросло ее значение после того, как выяснилось, что пространственное строение молекул играет решающую роль в работе всех механизмов живой клетки. Именно по этому признаку биокатализаторы — ферменты — сортируют молекулы, вовлекая в реакции только те из них, которые стыкуются с поверхностью фермента. Почти все аминокислоты, входящие в состав белков, могут существовать в виде пар оптических антиподов. Однако реальные белки состоят всегда из так называемых -изомеров. На 1)-изомеры организм реагирует, как на чужеродные молекулы, и не усваивает их. В обычных же химических реакциях оптические изомеры неотличимы, так же как не отличаются их температуры кипения или плавления, плотность и другие осязаемые свойства. Поэтому их разделение всегда было задачей выс- [c.79]

    Если белки в чем-то и проявляют общность в химическом поведении, позволяющем отнести их к одному классу веществ, то это только по отношению к протеолитическим ферментам. Подробно о становлении и развитии энзимологии, а также о механизме ферментативного расщепления белков говорится в следующем томе настоящего издания. Сейчас важно отметить, что в рассматриваемый период в этой области произошли глубочайшие изменения. Обратим внимание лишь на два события, которые оказали решающее влияние на изучение химического строения белковых молекул. Первым из них явилось установление Дж. Самнером (1926 г.) и Дж. Нортропом (1930 г.) белковой природы ферментов, что привело к совмещению задач химического и пространственного строения последних с задачами остальных белков. Второе событие заключалось в строгом доказательстве Э. Вальдшмидт-Лейтцем (1930-е годы) исключительно аминокислотного состава белкового гидролизата, полученного при дробном ферментативном гидролизе, т.е. комбинированном действии представительного набора ставших известными к тому времени протеолитических ферментов. Э. Вальдшмидт-Лейтц показал, что белки являются линейными полипептидами, звенья которых состоят из двадцати стандартных аминокислот с -конфигурацией центрального углеродного [c.66]


    К. Мейер предпринял совместное исследование механических свойств мышечных белков с дифракцией рентгеновских лучей. Было показано, что в расслабленном мускуле цепи главных валентностей ориентированы параллельно друг другу, а в сокращенном - каким-то иным способом. У высушенного в растянутом состоянии мускула Мейер наблюдал дифракционную картину, типичную для волокнистой структуры диаграмма высушенного сокращенного образца отвечала аморфному состоянию. Прямо связывая макроскопические механические изменения белкового вещества с его молекулярным химическим и пространственным строением, автор предположил, что источником мускульной энергии является экзотермическая химическая реакция, что позднее было подтверждено экспериментально В.А. Энгельгардтом и М.Н. Любимовой (1942 г.). [c.68]

    Кроме ряда научных данных, используемых в теории строения вещества, рентгеноструктурный анализ органических кристаллов оказывает помощь органической химии при установлении строения отдельных соединений. Так, например, по данным, полученным этим методом, из нескольких возможных химических формул пенициллина была выбрана одна. Рентгеновский анализ был применен для исследования строения многих десятков стероидов при этом выяснилось, что некоторым стероидам приписывались неправильные пространственные конфигурации. При помощи этого метода была полностью расшифрована структура такого сложного вещества, как фталоцианин. Рентгеновский метод позволяет надежно определять молекулярные веса белков для этого необходимы хорошо образованные кристаллы белков, дающие возможность получать хорошие снимки. [c.742]

    Стереохимия — наука о пространственном строении молекул (статическая стереохимия) и пространственном течении химических реакции, конформациях и конформационном анализе (динамическая стереохимия) — является важнейшим разделом теоретической органической химии. Она имеет огромное значение для химии природных соединений и биохимии, поскольку свойства, и в первую очередь физиологическая активность большинства природных веществ (аминокислоты, пептиды, белки, гормоны, ферменты, стероиды, стерины, алкалоиды, терпены и др.), зависят от их пространственного строения. [c.5]

    Отмеченные работы представляют собой первую попытку связать механические свойства белкового вещества с его химическим и пространственным строением. Дальнейшим развитием этого направления можно считать изучение Мейером мышечных белков. Было показано, что макроскопическое сокращение мускулов связано с изменением молекулярной формы белковых цепей. Проведя совместное механическое и рентгеноструктурное исследование, Мейер пришел к заключению, что в ослабленных мускулах имеются параллельно ориентированные цепи главных валентностей, а в сокращенных их нет. Он наблюдал дифракционную диаграмму у высушенного в растянутом виде мускула, типичную для волокнистой структуры, отвечающую аморфному состоянию. Такой интерпретации удовлетворяли данные опытов с замороженным белком. Растянутый мускул легко расслаивался при температуре жидкого воздуха вдоль предполагаемых волокон, тогда как сокращенный препарат в этих же условиях распадался на комочки. По этому поводу Мейер в 1930 г, писал "Белковые цепи, скрепляющиеся друг с другом по всей длине мускула в определенных местах посредством молекулярных сил сцепления несольватируемых групп или какими-нибудь другими связями и сокращающиеся или растягивающиеся под влиянием меняющейся величины pH, должны вызывать сокращения или же ослабления на протяжении всей длины мускула. Этим макроскопическое сокращение сводится в конце концов к внутримолекулярному процессу" [3. С. 435]. И далее он делает не менее важное и новое для того времени замечание "Нет сомнения в том, что источником мускульной энергии и причиной движения является химический выделяющий энергию процесс" [3. С. 438 см. также 4. С. 64]. [c.10]

    Всевозрастающее значение приобретает химия полимеров. Полимеры— химические соединения с большой молекулярной массой от нескольких тысяч до многих миллионов единиц. Большинство таких макромолекул состоят из повторяющихся группировок, звеньев, например целлюлоза, поливинилхлорид, поликапроамид, а также полимеры живых организмов белки, нуклеиновые кислоты. Если выделить вещества с молекулами из таких отдельных группировок или фрагментов, полностью сохранив их строение, то будут утеряны почти все полезные свойства полимеров. Именно способность макромолекул приобретать в процессе увеличения, рск та полимерной цепи или объемной пространственной структуры особые качества выделила науку о полимерах в самостоятельную ветвь органической химии. Полимеры, пожалуй, наиболее многочисленный класс химических соединений, исчисляемый миллионами. Это и природные высокомолекулярные соединения и синтетические каучуки, химические волокна, лаки, краски, иониты, меи и, конечно, пластмассы. [c.32]


    Динамическая стереохимия, изучающая конформационные равновесия молекул, влияние пространственного строения молекул на их реакционную способность — актуальная область теоретической органической химии. Конформационные представления имеют большое значение в молекулярной биохимии, молекулярной биологии, молекулярной фармакологии, так как биологическая активность большинства природных соединений (аминокислот, пептидов, белков, ферментов, углеводов, ДНК, РНК, стероидов, алкалоидов), а также лекарственных веществ зависит от их пространственного строения. В связи с этим большой интерес представляет конформационный анализ молекулярных структур, содержащих конформационно подвижную циклогексановую систему. К этим соединениям относятся, в частности, производные циклогексана, содержащие алкильные, винильные, этинильные и кислородсодержащие функциональные фуппы —С=0, —ОН, —СО—СН3, —О—СО—СН3. Большое практическое значение имеют производные циклогексана с эпоксидной функциональной группой — алкициклические эпоксиды, являющиеся исходными соединениями синтеза эпоксидных полимеров с ценными физико-химическими свойствами. [c.66]

    Существовало и другое представление о белках, как об очень подвижных, ни на что не похожих веществах. Хотя оно было малопродуктивным, тем не менее его придерживалось большинство биохимиков. Их взгляды отражает следующее высказывание B. . Садикова, одного из авторов дикетопиперазиновой теории. В 1933 г., т.е. спустя десять лет после созданной им вместе с Зелинским теории, он писал "...белковые вещества являются не обычными, хотя и весьма сложными органическими соединениями, а органическими соединениями, своеобразными вследствие того, что они способны переходить в какое-то крайнее лабильное состояние, свойственное живому организму..., в виду своей сверхлабильности нативные белки не имеют постоянства состава и постоянства строения это вещества с неопределенным текучим составом и текучим строением" [3. С. 81]. От истинного строения белков такое представление находилось столь же далеко, как и представление Мульдера. Впрочем, высказанная Садиковым мысль о физической и химической неопределенности белков также не была оригинальна. Задолго до него Э. Пфлю-гер делил белки на "живые" и "неживые", а Э. Геккель представлял их в виде чуть ли не одушевленных бесструктурных микрочастиц организма, которым отказывал не только в детерминированной пространственной структуре, но и в постоянном химическом строении. [c.64]

    Современное естествознание пользуется двумя главными методами для изучения строения вещества. Эти методы — химия и оптика в щироком смысле слова, т. е. изучение взаимбдействия вещества со светом во всем допустимом диапазоне длин электромагнитных волн — от рентгеновских до радиоволн. Химия рас-щифровывает первичную структуру белковых цепей, а также структуру функциональных центров белковых глобул, а частности активных центров ферментов (см. гл. 6). Однако химия (биохимия) как таковая не может установить пространственное строение молекулы белка или нуклеиновой кислоты. [c.265]

    Первостепенное значение имеет выяснение конформации нативного белка, которая определяет специфичность биологического действия. Поскольку условия эксперимента при анализе пространственного строения пептидно-белковых веществ обычно отличаются от условий, в которых они функционируют in vivo, в каждом случае необходимо строго доказывать, что исследуемая предпочтительная конформация в целом сохраняется в широком диапазоне параметров среды (например, в растворе или кристалле). [c.82]

    Метод ядерного магнитного резонанса (ЯМР) при использовании современных подходоа позволяет полностью расшифровать пространственное строение пептида или небольшого белка с молекулярной массой до 0 000— 15 000. Конечно, необходимыми условиями являются наличие хорошей приборной базы (прибор с рабочей частотой для протонов 300 — 5()0 МГц), правильная стратегия исследования применительно к конкретному объекту и достаточное количество вещества ( 1 мкмоль пептида или белка). Большой вклад в изучение пептидов и белков методом ЯМР внесли О. Жар-децки, К. Коппл и К. Вютрих. [c.113]

    Первое направление является логическим развитием и, даже можно сказать, завершением основного органохимического направления исследований белковых веществ, а исследования конфигурации белковых веществ начались в результате применения метода дифракции рентгеновских лучей для исследования структуры белков, аминокислот и пептидов. Первоначально, в 30-х годах в обоих этих направлениях преследовалась общая цель — выяснить основные принципы строения белковых веществ. Но по мере того, как начинает выясняться важная роль пространственной организации белковой частицы для проявления ее основных функций, рентгеноструктурный анализ постепенно занимает центральное положение среди мето ов, которые могут дать полную информацию не только о последовательности аминокислот в цепи, но в первую очередь о пространственной конфигурации (третичная структура) образующихся сложных соединений. [c.138]

    Однако работы Астбери помогли достаточно четко сформулировать цели исследований и наметить основные пути выяснения пространственной конфигурации белковых веществ. В 3 0-х годах складываются два основных направления рентгенострук-турных исследований белковых веществ (разрабатываемые первоначально исключительно для фибриллярных белков). Этими направлениями были, во-первых, изучение детального строения основных простых компонентов полипептидной цепи (признававшейся основной структурой белковых веществ) — аминокислот и простых пептидов, а также некоторых аналогичных структур, в первую очередь, дикетопиперазинов во-вторых,— изучение моделей полипептидных цепей, построенных на основании рентгеноструктурных анализов фибриллярных белков. Оба этих направления были тесно связаны друг с другом, так как исследование детального строения аминокислот, пептидов и модельных веществ ч данные о геометрических размерах этих соединений позволили бы использовать уже накопленные данные для построения все более точных модельных структур полипептидных цепей и перейти, таким образом, к выяснению закономерностей строения как полипептидной цепи, так и образуемых ею структур высшего порядка. [c.140]

    Благодаря наличию микро- и макроструктур биохимические процессы обмена веществ и энергии в клетках оказываются пространственно разобщенными и строго локализованными в отдельных участках клетки каждый тип клеточных структур выполняет определенные, свойственные ей биохимические функции. Именно в этих клеточных структурах протекают биохимические реакции и процессы, которые в наибольшей степени необходимы для жизнедеятельности организмов поглощение энергии -при фотосинтезе, выделение и сохранение энергии при окислении органических веществ (новообразование молекул АТФЬ синтез белков и др. Кратко рассмотрим строение и состав внутриклеточных частиц, в которых идут основные биохимические процессы. [c.29]

    Серия блестящих работ, опубликованных недавно Мак-Коннеллом с сотр., открыла новый многообещающий аспект применения таких реакций в молекулярной биологии. Пара.магнитные вещества, получаемые в результате реакций радикалов с биополимерами, по предложению хМак-Коннелла получили название сиин-меченых соединений. Спектры ЭПР спин-меченых белков могут дать ценную информацию о молекулярных осях симметрии, об аллостерических структурных изменениях, о природе и порядке связи аминокислотных фрагментов, о фор.ме и хпАП(ческом строении активных центров и их относительном пространственно.м расположении, о над.молекулярной структуре биополимеров. [c.164]

    Коферменты или кофакторы в отдельных случаях очень слабо связаны с белковой частью, иногда (метал-лопорфириновые комплексы) их связь относительно прочна, и соединение кофермент— белок практически не диссоциирует в растворе. В случае слабой связи и почти полной диссоциации этого соединения бывает трудно провести границу между субстратом и коферментом. В ферментных системах кофермент одного фермента может служить субстратом для другого. Такие вещества связки создают возможности проявления не только пространственных, но и временного кода, так как являются важными звеньями систем биокатализаторов. Хотя кофермент для проявления биокаталитической функции нуждается в белке, так что ферментная реакция совершается в комплексе кофермент — субстрат — белок, тем не менее строение и конфигурация молекул многих коферментов строго специфичны, причем не только первичная, но и структура, и конфигурация всей молекулы кофермента кодируют возможности проявления ее каталитической активности. Примером может служить молекула никотинамидениндинуклеотида (НАД), имеющая изогну- [c.178]

    Белки представляют собой полимеры, которые при большом молекулярном весе обладают сравнительно компактной структурой. В этом смысле белки довольно резко отличаются от обычных линейных полимеров. В последних молекулы представляют собой весьма рыхлые клубки с открытой структурой, в которых растворитель занимает до 97% всего объема. Отсюда сравнительно большие линейные размеры макромолекул и значительная вязкость растворов этих веществ. Иное дело у растворимых белков. Молекулы их, как принято говорить, глобулярны, т. е. компактно упакованы и содержат минимальные (порядка 20—30%) количества связанной воды. Поэтому макромолекулы белков малы по линейным размерам и загущают растворы во много раз меньше, чем линейные полимеры того же молекулярного веса. В отличие от обычных линейных полимеров, белки в силу сложности своего строения и разнообразия действующих в них молекулярных сил дают нам пример последовательного возникновения нескольких типов пространственной организации. [c.32]

    К ВМС относятся многие вещества, имеющие важное народнохозяйственное и биологическое значение. Сюда входят почти все синтетические волокна, пластмассы, каучуки, а также почти все материалы животного и растительного происхождения. Синтетические полимеры получаются методами полимеризации и поликонденсации. Характерной особенностью ВМС является наличие длинных цепных молекул, образованных из многих звеньев одинакового или различного химического строения с молекулярным весом от нескольких тысяч до миллионов. Молекулы могут иметь линейную форму (полиэтилен, целлюлоза), разветвленную (крахмал) или спиральную форму (белки, нуклеиновые кислоты). Вдоль цепи атомы связаны ковалентными связями, а между цепями возникают межмолекулярные силы взаимодействия типа Вандерваальсовых сил, которые действуют в обычных жидкостях. Цепи могут быть связаны поперечными химическими связями (вулканизованный каучук) и тогда полимеры имеют строение пространственной сетки. Свойства полимера зависят от длины цепи, природы атомов, входящих в состав молекулы, распределения атомов в цепи, взаимодействия молекулы с окружающей средой, с соседними молекулами полимера или с молекулами жидкости в растворе. Звенья молекулярной цепи ВМС обладают способностью к ограниченному взаимному вращению вокруг валентных связей, это приводит к гибкости цепи и возможности изменения ее конфигурации. Одну из основных групп ВМС составляют каучукоподобные вещества или эластомеры, способные к большим обратимым (высокоэластическим) деформациям. Все они содержат длинные цепные молекулы, отличающиеся высокой гибкостью. Если [c.284]

    Первыми объектами рентгеноструктурного анализа стали фибриллярные белки, а среди них - фиброин шелка. Его рентгенограмма получена в 1920 г. Р. Герцогом и У. Янке [5-7] и несколько позднее Р. Бриллем [8]. Было обнаружено, что белок состоит из кристаллической и аморфной частей. В состав кристаллической части входят только глицин и аланин в соотношении 1 1. Со ссылкой на Н.Д. Зелинского (независимо это сделать было нельзя) авторы высказали предположение, что аминокислотные остатки образуют в белке метил-дикетопиперазины во всяком случае, полициклическая структура белка не противоречила наблюдаемой дифракционной картине. Сторонники дикетопиперазиновой теории восприняли это не как предположение, а как независимое экспериментальное доказательство ангидридного строения белковых молекул и в течение длительного времени ссылались на работы Герцога и Брилля, якобы подтверждавших справедливость их точки зрения. Серию интересных исследований структуры высокомолекулярных органических соединений, в том числе и белков, выполнили в 1920-е годы Мейер и Марк [3, 9]. В отношении химической организации этих соединений они придерживались мнения Г. Штаудингера, а в отношении природы белков - представлений Э. Фишера. Г. Штаудингер впервые (1922 г.) предположил, что высокомолекулярные соединения не являются веществами, состоящими из небольших, ассоциированных в растворе в крупные агрегаты молекул, наподобие коагулянтов, как считали раньше, а представляют собой структуры, все звенья которых валентно связаны между собой, образуя линейные, разветвленные, плоские или пространственные сетчатые цепи главных валентностей. [c.8]

    Одним из самых распространенных структурных белков является коллаген. Он входит в соединительную ткань и служит основным компонентом сухожилий, костей и связок. При продолжительном нагревании коллагена с водой он становится растворимым и превращается в желатин. Рентгеновскую дифракцию на коллагене из сухожилий впервые наблюдали Р. Герцог и У. Янке (1926 г.), а на желатине - П. Шеррер (1920 г.), который пришел к выводу о его аморфном строении. Повторные исследования желатина Дж. Катцем и О. Гернгроссом (1925 г.) показали, однако, что наряду с интерференцией аморфной части он дает кристаллическую интерференцию. В растянутом состоянии желатин имеет диаграмму волокнистого вещества. Авторы сделали вывод, что при переработке коллагена в желатин его мицеллы, дающие такого вида дифракционную картину, существенно не меняются. Период идентичности по оси волокна у коллагена, согласно Н. Сузиху, равен 8,4 А, а у фиброина шелка, по данным О. Кратки, - 7,0 А. Значительное различие этих величин свидетельствует о разной пространственной структуре коллагеновых и фиброиновых цепей, что, в свою очередь, указывает на различие в химическом строении. [c.9]

    Используя приведенные выше данные, можно провести сравнение пространственных структур ряда функционально неродственных белков, таких, как, например, Ка , К+-АТРаза почек, белок быстрых натриевых каналов и аденилатциклаза мозга. Их объединяет то, что все они относятся к интегральным мембранным белкам и выполняемые ими функции имеют трансмембранный характер перенос веществ или передача химических сигналов. По-видимому, благодаря этому их пространственная организация имеет ряд общих особенностей. Все они содержат в своем составе гидрофобный сегмент, локализованный в средней части молекулы. Значительные части полипептидной цепи экспонированы на обеих мембранных поверхностях. Причем в некоторых случаях, таких, как, например, аденилатциклаза, одна полипептидная цепь образует три последовательно расположенных домена надмембранный, мембранный и внутриклеточный. В других, — например, Ка" , К -АТРаза, внутриклеточный домен образован а-субъе-диницей, тогда как Р-субъединица экспонирована практически целиком на внешней мембранной поверхности. Аналогичные особенности строения прослеживаются также и для других белков, функции которых имеют трансмембранный характер (ацетилхолиновый рецептор, цитохром-с-оксидаза или цитохром-редуктаза). [c.214]


Смотреть страницы где упоминается термин Пространственное строение белковых веществ: [c.193]    [c.176]    [c.397]    [c.70]    [c.255]    [c.204]    [c.176]    [c.70]    [c.255]    [c.397]    [c.295]    [c.204]   
Смотреть главы в:

Основы стереохимии -> Пространственное строение белковых веществ




ПОИСК





Смотрите так же термины и статьи:

Белки строение

Вещества строение

Пространственное строение белка

Строение белковых веществ



© 2025 chem21.info Реклама на сайте