Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы классической стереохимии

    С методами классической стереохимии автор обошелся, как он признает сам, не вполне справедливо. Он подчеркивает только те случаи, при которых эти методы приводили к ошибочным выводам. Наряду с этим многочисленные примеры, когда, например, исследование изомерии указывало на правильные структуры молекул, исключены из рассмотрения. С таким подходом можно согласиться, поскольку классические методы хорошо известны и гораздо важнее обратить внимание читателя на необходимость проявлять большую осторожность при их использовании. Но картина в целом оказывается все-таки искаженной. [c.7]


    Методы классической стереохимии [c.213]

    Методы классической стереохимии 223 [c.223]

    Методы классической стереохимии 227 [c.227]

    В этом разделе мы рассмотрим несколько из наиболее ярких успехов новейшей стереохимии в решении проблем, которые не поддавались разработке методами классической стереохимии или даже вообще не были поставлены в прежнее время. [c.309]

    В классической стереохимии наиболее важными были разделы, связанные с зеркальной (оптической) изомерией. Это отразилось и на содержании книги Основы стереохимии , в которой много места уделено оптически активным веществам. В настоящее время центр тяжести стереохимии явно сместился в область исследования современными физическими методами тонких деталей пространственного строения молекул (конформационные проблемы), а также изучения влияния пространственного строения на реакционную способность (динамическая стереохимия). С развитием спектрополяриметрического метода исследования совершенно иной характер приобрели и разделы, относящиеся к оптической активности. Все эти сдвиги нашли отражение в построении и содержании новой книги. [c.11]

    Авторов поразил тот факт, что из 10 отдельных энергетических минимумов ниже —20 ккал/моль только 4 ассоциируются с молекулами воды, положение которых установлено кристаллографически. Аналогичным образом многие минимумы с энергией от —15 до —20 ккал/моль не имеют поблизости от себя молекул воды, входящих в кристалл. Большинство этих минимумов находится вблизи концов боковых цепей, состоящих из заряженных и других гидрофильных аминокислот, которые, как можно ожидать, специфически гидратированы. Из результатов уточнения кристаллографической структуры [5] с очевидностью следует вывод об интенсивном тепловом движении и/или разупорядочении длинных гидрофильных боковых цепей. Концевые атомы длинных боковых цепей характеризуются высоким значением температурного фактора, я если даже их положение еще не установлено кристаллографическими методами, то им приписывают положения, согласующиеся с положениями других атомов и с классической стереохимией. В общем молекулы воды, связанные с этими боковыми цепями, подвержены еще более интенсивному тепловому движению и поэтому не могут давать легко идентифицируемых максимумов электронной плотности. [c.207]

    В-третьих, классическая стереохимия по самому характеру своих экспериментальных методов была вынуждена ограничиться изучением конечных групп атомов — молекул и комплексных ионов. Распространение области стереохимии на бесконечные комплексы стало возможно только с изучением твердого состояния. [c.221]


    Современную стереохимию отличает от классической в первую очередь то, что если основы последней, несмотря на многочисленные косвенные их доказательства, все же продолжали рассматривать как гипотезы, то во второй четверти XX в. эти основы приобрели достоверность факта. Вместе с тем в частные выводы классической стереохимии были внесены существенные коррективы, а стереохи-мические представления были распространены не только на новые классы органических молекул (захватив, например, всю химию алициклических соединений), но и на промежуточные продукты органических реакций. Все это во многом обязано экспериментальным физическим методам исследования, которые позволили определить геометрические параметры изучаемых микрообъектов 14, гл. VI]. [c.47]

    Современная стереохимия включает в себя, конечно, основные идеи и достижения классической стереохимии, но отличается от последней главным образом в двух отношениях. В современной стереохимии широко применяются разнообразные экспериментальные физические методы исследования пространственного строения молекул, что позволило превратить исходные положения классической стереохимии из гипотез, которые ранее, как будет видно из следующей главы, подвергались многочисленным попыткам пересмотра, в твердо установленные истины. Эти же методы позволили превратить классическую стереохимию из науки по существу качественной (если не считать соображений о валентных углах, подсказываемых моделью углеродного тетраэдра) в количественную, оперирующую более или менее надежными данными о геометрических параметрах молекул. Второе отличие современной стереохимии от классической связано с разработкой, после создания квантовой химии, учения о природе химической связи, а следовательно, с подведением под стереохимию фундамента в виде физической теории. В результате современная стереохимия может более тонко и точно описать пространственное строение органических соединений. Характеристике того нового, что внесло в стереохимию применение современных методов экспериментальной и теоретической физики, будут посвящены [c.67]

    В этом разделе мы рассмотрим развитие того направления в классической стереохимии, которому было уделено наибольшее внимание в первоначальных работах Вант-Гоффа и Ле Беля. Идя от более простого к более сложному, мы рассмотрим сначала методы получения оптически активных соединений, затем способы определения их конфигурации и в заключение — установление и толкование зависимостей между пространственным строением и оптической деятельностью органических молекул. Конечно, упомянуты будут только важнейшие вехи в истории этой области стереохимии. [c.68]

    Конечно, вскоре после новых данных по определению геометрии органических молекул физическими методами исследования, теория Вайссенберга была сдана в архив. Но ее возникновение и появление на сцене пирамидальной модели атома углерода, противопоставленной углеродному тетраэдру, очень показательно. Получается так, что, несмотря на изобилие данных, накопленных классической стереохимией в пользу модели углеродного тетраэдра, они все же казались в глазах некоторых химиков недостаточными, потому что это были все же косвенные данные. И вот, несмотря на видимую устойчивость той части стереохимической теории, которая основывалась на модели углеродного тетраэдра в случае насыщенных соединений, и несмотря на отсутствие всякой необходимости в пересмотре ее положений, оказалось достаточно одного ошибочного исследования, но проведенного новейшим методом, чтобы замутить воду , поставить общепринятую теорию под сомнение и увидеть в результатах, которые очевидно можно было трактовать неоднозначно, даже знамение, как писал Анри, нового периода в развитии химии . Чего в этом прогнозе больше самонадеянности или самообмана  [c.162]

    В нашей монографии по истории электронных теорий органической химии было рассмотрено возникновение и развитие квантовой химии органических соединений, и поэтому мы будем давать ссылки на [Б II] каждый раз, когда таким путем можно будет избежать повторений (без чего, впрочем, не всегда удастся обойтись). В настоящей монографии нас интересуют, однако, не квантово-химические способы изучения энергетики и электронного строения молекул, а приложение квантовой химии для объяснения стереохимического строения органических соединений, включая положения, на которых основана классическая стереохимия, и рассмотренные в предыдущей главе обобщения эмпирического материала по геометрическим параметрам органических молекул. Здесь мы снова хотели бы подчеркнуть уже отмеченный в работе [Б II] факт, что квантовая химия органических соединений в своих конкретных приложениях является полуэмпирической теорией, которая не может обойтись без включения в расчетные методы экспериментально получаемых данных по геометрии молекул, и что нередко, казалось бы, убедительные теоретические заключения идут насмарку, когда выясняется, что принятые при их выводе экспериментальные результаты оказываются ошибочными или поставленными под сомнение более поздними исследованиями. [c.209]

    Очевидно, именно в этой области, где накопилось больше всего фактов, не укладывающихся в рамки существующих теорий, и следует ожидать (ср. [9, стр. 380]) наиболее важных успехов для развития всей структурной теории в органической химии. Хотя в последней как бы сосуществуют классическая теория химического строения, классическая стереохимия, электронные теории строения и учение о геометрии молекул (по данным современных физических методов исследования строения вещества), но в той части структурной теории, которую мы называем современной стереохимией, они скорее слиты воедино и поэтому очевидно, что именно в ее рамках можно получить наиболее глубокое проникновение в строение органических молекул. [c.354]


    Одним из основных положений классической стереохимии являлось представление о свободном вращении вокруг простых связей. Только при таком допущении число теоретически выводимых пространственных изомеров находится, как правило, в соответствии с числом фактически обнаруживаемых. Однако в дальнейшем было показано, что в действительности вращение вокруг простых связей не вполне свободно. Заторможенность вращения приводит к тому, что одна и та же молекула может принимать разные геометрические формы, называемые конформациями поворотными изомерами). В некоторых особых случаях поворотный изомер оказывается настолько устойчивым, что его можно выделить как таковой. Примером могут служить а т р о п о-и з о-м е р ы ряда дифенила и аналогичные им соединения, которым посвящен один из разделов главы IV. Однако, как правило, отдельные поворотные изомеры столь незначительно отличаются друг от друга по свойствам и столь легко переходят друг в друга, что попытки разделить их оказываются безуспешными. В этих случаях доказать существование поворотных изомеров можно лишь при помощи некоторых физических методов. [c.82]

    Размеры и форма молекулы определяются следующими тремя геометрическими факторами длинами связей (межатомными расстояниями), валентными углами и межмолекулярными радиусами. Из этих трех характеристик классическая стереохимия указывала только значения валентных углов и то лишь для простейших случаев. Все остальные данные о геометрии молекул получены физическими исследованиями, в основном методами рентгеноструктурного анализа кристаллов и электронографии паров, а также изучением спектров поглощения и комбинационного рассеяния. [c.7]

    Теория пространственного расположения атомов в молекуле стереохимия) представляет. собой дальнейшее логическое развитие классической теории строения органических соединений А. М. Бутлерова. Стереохимия позволила разработать новые методы исследования органических веществ. [c.206]

    Неплоское расположеьше четырех связей бора было установлено методами классической стереохимии. При компланарности связей бора в салицилборате (а) у этого иона должна быть плоскость симметрии салицилборатные соли с помощью стрихнина удалось разделить на оптические изомеры. Хотя этот факт [c.167]

    Существует и более простой рентгеновский метод, который применяется в том случае, когда в лиганде содержится асимметрический атом с известной абсолютной конфигурацией. С помощью обычной методики находят относительные конфигурации всех источников асимметрии если в системе имеется центр с известной конфигурацией, установленной другим путем, то по этому центру можно определить абсолютную конфигурацию всего комплекса. Таким способом были исследованы [25, 26] комплексы, изображенные на рис. 2 и 3. Преимущество данного метода состоит в том, что для очень многих молекул органических веществ абсолютная конфигурация уже надежно установлена [ 18 [методами классической стереохимии в сочетании с абсолютным методом Бейвута, благодаря чему известно большое число молекул, которые можно применить в качестве стандартных систем с известной конфигурацией. Среди них многие важные лиганды, такие, как оксикислоты, 1,2-диамины, а-амино-кислоты и пептиды. Можно ожидать, что использование подобных веществ (с асимметрическим атомом углерода) в качестве внутреннего стандарта позволит значительно расширить область применения указанного метода. [c.154]

    Спиридопов, Рамбиди и и.х сотрудники [15, 1С, 68—72]), а так>1 е за рубежом [73]. Методом высокотемпературной электронографии удается изучить стабильные соединения и ва.леитные состояния, необычные с точки зрения классической стереохимии и теории валентности, продукты диссоциации и ассоциации. [c.31]

    С помощью диффракционного анализа теоретически возможно определить положения всех атомов в кристалле. В благоприятных случаях это может быть действительно осуществлено, и тогда все качественные вопросы классической стереохимии решаются количественно, во всяком случае для молекулы в таком виде, в каком она существует в кристалле. Правда, современная стереохимия оперирует и с более тонкими деталями структуры и реакционной способности, деталями, которые кристаллострук-турный анализ определяет только частично или не определяет вовсе. Кроме того, молекула в твердом теле может отличаться от молекул в газе или в жидкости, хотя в общем различия молекулярных размеров в газе и твердом теле невелики. Исключением из этого правила является пятихлористый фосфор о других фиксированных в некоторых случаях незначительных различиях см. стр. 87. Однако для молекулярных кристаллов существенные различия исключаются, поскольку силы кристаллической решетки малы по сравнению с силами, способными вызвать значительные искажения в ковалентной молекуле. Поэтому кристаллоструктурный анализ занимает особое положение как метод, позволяющий получить стереохимические данные. Возможно, что он несколько менее точен, чем электронографический метод, когда последний применяется к очень простым молекулам в газовой фазе кристаллоструктурный анализ также значительно менее точен, чем спектроскопический и микроволновый методы, но он может быть применен для гораздо более широкого круга веществ. Именно по этим причинам большая часть данной главы посвящена рентгенографическому анализу, и термин кристаллография в контексте относится главным образом к нему. Автор стремился к тому, чтобы изложить и проиллюстрировать основные принципы этого метода, а не составлять очередную сводку большого числа уже опубликованных результатов ему хотелось бы раскрыть возможности и пределы метода и таким образом помочь читателю оценить значение приведенных данных и выгодность решения этим методом какой-либо частной проблемы. Что же касается опубликован- [c.53]

    Исследование пространственного расположения атомов в молекулах и в комплексных ионах является предметом стереохимии. Поскольк -лишь незначительное число неорганически.х веществ можно было исследовать. методами классической тepeoxи ши, последнюю стали рассматривать почти как область органической химии. До открытия современных методов исследования строения стереохимия огра1шчивалась изучением конечных групп атомов в растворе, в жидкости или в паре. Классическая стереохимия в основном занималась изучением явлений стереоизомерии и оптической активности соединений и липи н редких случаях давала сведения о молекулах или комплексных ионах, не обладавших одним из этих свойств. Более того, полученные данные носили качественный характер и касались, главным образом, общей ф1>рмы молек . 1ы, например расположения связей в молекуле т(ша МА в одной плоскости или по направлению к углам тетраэдра. [c.10]

    Физические методы исследования позволили определить важнейшие геометрические параметры органических соединений — длины связей и валентные углы, позволили установить пространственное строение огромного числа соединений, иногда необычайно сложной структуры, как, например, у витамина Взг, позволили продвинуть далеко вперед только наметившееся в рамках классической стереохимии учение о конформациях алициклов и тем самым создать основы конформационпого анализа — прилагаемого к изучению важнейших объектов биоорганической химии наконец, эти методы позволили расширить область исследования пространственного строения органических соединений, включив в нее, кроме молекул, еще радикалы, ионы, а также различного рода переходные состояния и промежуточные комплексы, возникающие в процессе реакций, а следовательно, включить в эту область механизмы органических реакций. Результаты исследований строения органических соединений новыми методами [c.14]

    Обобщение материала по молекулярной асимметрии к моменту перехода от классической стереохимии к современной было дано в работе Успенского [54]. Исследования строения органических соединений современными физическими методами позволили объяснить оптическую изомерию, обусловленную молекулярной асимметрйей, вызываемой ограничением свободного вращения вокруг простых связей в производных дифенила или деформацией молекул. Оба эти случая будут рассмотрены в главе VHI (стр. 312 и 317). [c.82]

    Одно из них связано с применением новых глубоко проникающих в строение вещества методов исследования — рентгенографического, электронографического, а также спектроскопических. Эти методы позволили определить геометрические параметры (межатомные расстояния и валентные углы) многих органических соединений, что не только дало подтверждение основным положениям классической стереохимии, но и было ее значительным углублением, так как придало стереохимическим молекулярным моделям правильные пропорции. Эмпирическое понятие о ковалентных, а особенно о вандерваальсовых радиусах позволило решать при помощи таких моделей вопрос о пространственных эф ктах, благоприятствующих или препятствующих тем или иным реакциям, а также вопрос о существовании поворотных изомеров и наиболее благоприятных конформаций. [c.349]

    Конформация органических молекул. Одиим из основных принципов классической стереохимии является, как известно, свободное вращение вокруг простых связей. Торможение свободного вращения вокруг простых связей С—С, С—N и т.д. вследствие наличия объемистых заместителей обусловливает появление оптических изомеров (атропических изомеров). Однако в результате недавно проведенных исследований при помощи усовершенствованных физических методов было установлено, что даже у простейших молекул свободное вращение вокруг связей С—С, С—О и т.д. не является неограниченно свободным и что в определенных положениях оно наталкивается на сопротивление. Иными словами, вращение вокруг простых связей является ограниченным вращением. Молекула может существовать в нескольких геометрических формах в виде поворотных изомеров, отличающихся между собой своей энергией. Эти формы мало устойчивы, энергетические барьеры между ними недостаточно велики для их существования в виде раздельно выделяемых изомеров они легко переходят одна в другую. Таким образом, они отличаются от устойчивых конфигураций стереохимии и получили название гконформацит. [c.94]

    Учение о взаимном влиянии атомов в электронной интерпретации дало возможность лучше разобраться в реакционной способности органических веществ. Нейтронографические исследования, наряду с использованием метода радиоактивных индикаторов ( меченые атомы ) и определением дипольных моментов, позволили весьма глубоко проникнуть в строение органических веществ. Были уточнены некоторые данные классической стереохимии, измерены межатомные расстояния в органических молекулах. Квантовая механика внесла в органическую химию представления о а-П п-связях и об изменении электронной плотности в различных частях молекулы. Это в свою очередь позволило объяснить многие правила химико-органических превращений, ранее открытые эмпирическим путем, а также сделать ряд новых научных предсказаний. Важно подчеркнуть, что квантовохимические представления в большинстве случаев подтвердили выводы, к которым химики-оргапики пришли раньше на основе теории химического строения, взаимного влияния атомов и тетраэдрической модели углерода. Это обстоятельство говорит о том, что бутлербвская теория была и остается самым крупным завоеванием органической химии. [c.36]

    Таким образом, строение углеродных соединений в классической стереохимии представляется наглядными моделями, в основе которых лежит представление о тетраэдрическом атоме углерода, теперь уже устаревшее. Тем не менее основные стереометрические свойства связей, найденные с помощью таких моделе , согласуются с данными опыта, как косвенные химические данные, так и прямая информация, полученная методами рентгено- и электронографии, подтверждают указанные свойства этиленовых и ацетиленовых соединений. Опыт, однако, не подтверждает численные значения углов между связями в плоских молекулах этиленовых соедивений — по модели Вант-Гоффа эти углы должны быть тетраэдрическими (109°28 ), опыт же дает значения, близкие к 120°. Это расхожденн не удивительно, следует скорее удивляться общим успехам, достигнутым с помощью тетраэдрической модели. [c.44]

    Результаты исследований строения органических соединений новыми физическими методами не только дали подтверждение основным положениям классической стереохимии (хотя йногда и внесли в нее определенные коррективы, как это было, например, в случае малых алициклов), но и значительно углубили ее, придав прежним стереохимическим моделям правильные пропорции, а отдельным деталям этих моделей — количественные характеристики. [c.224]

    Высказанное еще в классической стереохимии предположение, что расстояния между атомами загиеят от типа свяг.и, различающеюся в клас-сическ ом структурном учении, подт1е ждается результатами современных физических методов определения структуры. Связанные двойной связью атомы находятся ближе один к другому, чем связанные простой связью, [c.391]

    Тетрапиррольные пигменты, представляющие собой группу соединений со столь жизненно важными биологическими функциями, изучались чрезвычайно интенсивно. Поэтому о механизмах их образования и функционирования известно больше, чем в случае какой-либо другой группы пигментов. Установление трехмерных структур миоглобина и гемоглобина и механизма, с помощью которого гемоглобин функционирует в транспорте кислорода, представляет собой один из классических образцов научного исследования. Во многом ясным стал также путь, по которому хлорофиллл используется как главный светособирающий пигмент в фотосинтезе (гл. 10). Основные аспекты биосинтеза порфиринов (и коррина), в том числе его детали и стереохимия, изучены в очень элегантных опытах с помощью классических радиоизотопных методов и усовершенствованных методов введения и анализа -метки. Желающий изучать биосинтез порфиринов не смог бы сделать ничего лучшего, чем прежде всего внимательно прочитать эти работы. Тем не менее даже при таком положении вещей ход некоторых биосинтетических превращений до сих пор полностью не установлен. Для изучения образования бактериохлорофиллов, необычных хлорофиллов с и d яз водорослей, модифицирован- [c.219]


Смотреть страницы где упоминается термин Методы классической стереохимии: [c.563]    [c.14]    [c.58]    [c.253]    [c.220]    [c.58]    [c.168]    [c.214]    [c.28]    [c.5]    [c.70]   
Смотреть главы в:

Строение неорганических веществ -> Методы классической стереохимии

Определение молекулярной структуры -> Методы классической стереохимии




ПОИСК





Смотрите так же термины и статьи:

Классические

Стереохимия

Стереохимия методы



© 2025 chem21.info Реклама на сайте