Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплавы ля высоких давлений

    Из меди и ее сплавов с цинком (латуни) изготовляют холодильники газодувок и газовых компрессоров, уплотнения крышек и фланцевых соединений аппаратов высокого давления, блоки разделения газовых смесей и воздуха методом глубокого охлаждения и другое оборудование, не имеющее соприкосновения с аммиаком. Аммиак, взаимодействуя с медью и ее сплавами, образует сложные комплексные соединения. При этом полностью изменяются физические свойства металлов и может нарушиться герметичность оборудования. Кроме того, прн высоких температурах в газовой среде восстановительные газы (водород, окись углерода и углеводороды) вызывают хрупкость окисленной меди. [c.94]


    Рафинирование алюминиевых сплавов от вредных примесей цинка, магния и других элементов, обладающих относительно высоким давлением насыщенного пара, осуществляется вакуум-дистилляцией. Скорость дистилляции зависит от скорости диффузии металла в поверхностный слой, от температуры и парциального давле-78 [c.78]

    При высоких давлениях применяют сальники с коническими уплотняющими элементами, выполненными из мягкого антифрикционного сплава — бронзы, баббита (рис. 17.6, в). Внешний и внутренний элементы имеют радиальный разрез и охвачены стальными нажимными кольцами. В последнее время широко исполь- [c.221]

    Часто используют давление 350 кгс/см и температуру 80U" С. Тенденция к высоким давлениям в процессе гидрокрекинга и в производстве аммиака привела к увеличению использования низкохромистых сплавов для обеспечения прочности и предотвращения водородной коррозии. Это требование заставляет создавать цельносварные конструкции, которые сложнее в техническом обслуживании и ремонте. [c.116]

    Карбонильная коррозия. Под карбонильной коррозией понимают разрушение металлов и сплавов при воздействии на них в особых условиях оксида углерода. При нормальных условиях оксид углерода по отношению к металлам инертен, но при высоких температурах и давлениях может образовывать со многими металлами легко возгоняющиеся вещества—карбонилы 1Ме-1-лС0—>-Ме(СО) ], которые затем разлагаются на металл и оксид углерода. При более высоких температурах вследствие высокого давления паров разложившегося карбонила действие СО на железо прекращается. Действие СО вызывают коррозию поверхностного слоя металла с разрыхлением на глубину до 5 мм. Изменение структуры металла на некотором расстоянии от поверхности уже не происходит. [c.460]

    Наиболее полное уравновешивание достигается при равенстве масс. Для этого поршень в ряду низкого давления выполняют облегченным, например из легких сплавов, или утяжеляют поршень ряда высокого давления. Для уменьшения момента сил инерции первого порядка следует сокращать расстояние между рядами. [c.157]

    Прямой синтез алмазов из углеродсодержащих веществ без добавки каких-либо способствующих образованию алмаза веществ (катализаторов, растворителей) протекает при очень высоких давлениях и температурах. При каталитическом синтезе удается снизить температуру и давление более чем в 2 раза (4,1 - 4,5 ГПа, 1150 - 1200 С), поэтому каталитический синтез алмазов сейчас является основным. Катализаторами являются марганец, хром, тантал, а также сплавы, образованные этими элементами с металлами, которые каталитически неактивны для данного процесса. Кроме того, катализаторами синтеза алмазов являются сплавы переходных элементов Ti, Zr, Hf, V, W, Мо, Nb с металлами Си, Ag, Au. Превращение графита в алмаз происходит при хорошем контакте между ним и жидким (расплавленным) металлом. [c.49]


    Если система однородна, т. е. в пределах ее не происходит каких-либо скачкообразных изменений свойств, и в то же время состоит из нескольких различных типов частиц, то она называется раствором. В широком смысле этого слова растворы могут иметь любое агрегатное состояние — газовое, жидкое или твердое. Газы могут смешиваться при не слишком высоких давлениях в любых соотношениях и независимо от их химической природы. Смешение происходит в результате свойственной всем макроскопическим системам тенденции к переходу в более хаотичное состояние. Этот вопрос подробнее рассматривается в следующей главе. Здесь отметим лишь, что так как межмолекулярные взаимодействия в газе невелики, этой тенденции ничто не противодействует, что и приводит к неограниченной смешиваемости газов. Существуют растворы и в твердом состоянии, например многие сплавы металлов, однако возможности их образования ограничены. Как нетрудно понять из предыдущего параграфа, твердый раствор может образоваться лишь, если два сорта молекул атомов или ионов могут заменять друг друга в элементарной ячейке кристалла. В дальнейшем в этом курсе речь будет идти только о жидких [c.120]

    Ниобий — один из основных компонентов многих жаропрочных и коррозионностойких сплавов, которые применяются в производстве газовых турбин, реактивных двигателей, ракет. Ниобий вводят также в нержавеющие стали. Стали, содержащие от 1 до 4% Nb,отличаются высокой жаропрочностью и используются как конструкционные материалы для изготовления котлов высокого давления. Сталь с добавкой ниобия — хороший материал для электросварки стальных конструкций ее применение обеспечивает отличную прочность сварных швов. [c.287]

    Титан и его сплавы находят все большее применение в современном машиностроении, авиастроении, судостроении, турбостроении, производстве вооружения. Особенно ценен титан как материал для частей конструкций, работающих в напряженных условиях, критерием пригодности которого является отношение прочности к весу. Титан используют, когда требуется сочетание минимального веса с высокой прочностью, термической и коррозионной стойкостью. Так, его применяют для изготовления деталей судов, самолетов, трубопроводов, котлов высокого давления, для оборудования высокотемпературных процессов в химической и других отраслях промышленности. [c.88]

    Превращение графита (часто встречающегося в природе) в маз требует высокого давления (1000 МПа) и температуры свыше 2500 °С, а также использования некоторых металлов (например, железа, никеля и их сплавов), способствующих разрушению или деформации кристаллической решетки графита или снижающих энергию, необходимую для перестройки кристаллической решетки. [c.345]

    Ингибиторы могут переноситься на поверхность, например из жидкой коррозионной среды, где ингибиторы находятся в растворенной или дисперсной форме из предотвращающей коррозию жидкости с добавкой ингибитора из противокоррозионной краски с активным пигментом из атмосферы внутри упаковки, в этом случае требуется ингибитор с относительно высоким давлением паров, так называемый летучий ингибитор коррозии из защищаемого материала, ингибитор может добавляться в качестве компонента сплава. [c.72]

    Для водонагревателей с высоким давлением применяются медноникелевые сплавы, но при этом необходимо, чтобы ионы меди не попадали в котлы. [c.119]

    В то же время углерод не является вредной примесью в тех случаях, когда воздействие водорода проявляется лишь в уменьшении пластичности (т. е. относительного сужения) материала, не вызывая явных изменений характера его разрушения. Это часто наблюдается при испытаниях низкопрочных сплавов в водороде при высоком давлении [37—39], испытаниях на разрыв после катодного наводороживания [39—41] или испытаниях на изгиб [19]. Например, при испытаниях ряда сплавов Fe — С под давлением в водороде не отмечено изменений относительного сужения или сравнительной восприимчивости к охрупчиванию при концентрациях углерода от 0,1 до 0,5% (по массе), хотя на результате могли сказаться колебания уровней прочности [37]. [c.58]

    Здесь будут рассмотрены сплавы с аустенитной матрицей, не являющиеся мартенситными и упрочняемые главным образом выделениями. Обычно выделения в таких сплавах представлены упорядоченной -у -фазой, известной также по суперсплавам на основе никеля, имеющей состав К1з(А1, Т1). Например, сплав А-286 представляет собой нержавеющую сталь 15 Сг—25 N1 с добавками 2,25% Т1 и 0,2% А1, необходимыми для образования фазы V -В промышленных образцах сплава А-286 наблюдались КР [66, 120], водородное охрупчивание [72, 118, 120, 121], а также рост трещин в условиях постоянного нагружения при высоком давлении водорода [122]. [c.79]

    Что касается первого пункта, то, действительно, сухой газообразный водород даже при высоком давлении не оказывает существенного влияния на результаты испытаний на растяжение [68, 84, 118] или на рост трещин [164—168] в алюминиевых сплавах. Однако при катодном наводороживании в алюминии наблюдается обратимое охрупчивание [169—171] с характерной для классического водородного охрупчивания зависимостью от скорости деформации и температуры [170]. Таким образом, теперь нельзя утверждать, что один водород не способен вызывать охрупчивания алюминиевых сплавов. По-видимому, все, что необходимо — это достаточно высокая подвижность водорода, позволяющая обеспечить проникновение в материал некоторого его минимального количества. [c.93]


    Практически все изученные сплавы этого класса склонны к сильному охрупчиванию как при внутреннем (катодном) наводороживании, так и в газообразном водороде при высоком давлении [38, 84, 118, 122, 168, 270, 278, 279]. Наиболее подробно ис- [c.113]

    Ниобий — один из основных компонентов многих жаропрочных и коррозиониостойких сплавов. Особенно большое значение имеют жаропрочные сплавы ниобия, которые применяются в производстве газовых турбин, реактивных двигателей, ракет. Ниобий вводят также в нержавеющие стали. Он резко улучшает их механические свойства и сопротивляемость коррозии. Стали, содержащие от 1 до 4% ниобия, отличаются высокой жаропрочностью и используются как материал для изготовления котлов высокого давления. Сталь с добавкой ниобия — превосходный материал для электросварки стальных конструкций ее применение обеспечивает необычайную прочность сварных швов. [c.653]

    Под карбонильной коррозией понимают разрушение металлов и сплавов при воздействии на них в особых условиях окиси углерода. При нормальных условиях окись углерода по отношению к металлам инертна. Условия карбонильной коррозии металлов имеют место в процессах получения синтетических метилового, бутилового и других спиртов, протекающих при высоких давлениях и повы-шешгых температурах. Окнсь углерода при высоких температурах и давлениях может образовывать со многими металлами (особенно металлами восьмой группы периодической системы элементов) легко возгоняющиеся вещества — карбонилы  [c.153]

    Обычно теплоносители пропускают через открытые жидкостные бани (см. рис. 203), змеевики (рис. 333) или кожухи (рис. 334), которыми снабжается куб колонны. В тех случаях когда для получения температур выше 100 °С нельзя применить пар высокого давления, используют перегретый пар (см. разд. 6.1). Жидкие теплоносители — парафиновые масла, глицерин или триэтиленгли-коль — нагревают в замкнутом контуре с помощью обогревающего змеевика (см. рис. 317) или термостата. Для обогрева пилотных и промышленных стеклянных аппаратов в качестве теплоносителей в основном используют водяной пар и нагретое масло. На рис. 335 показаны погружные теплообменники для пилотных и промышленных аппаратов с мешалками и без них. В качестве открытых жидкостных бань используют водяные бани для температур до 80 °С, масляные бани для температур до 330 °С (см. табл. 39), бани из расплава солей для температур 150— 550 °С (см. табл. 39) песчаные бани для любых температур, бани с расплавленным металлическим сплавом для температур выше 70 °С (см. рис. 318). [c.398]

    Тнтан и его сплавы находят все большее применение в совре-мен.чом машиностроении, авиастроении, судостроении, турбостроении, в производстве вооружения. Особенно ценен титан как материал для изготовления частей конструкций, работающих в напряженных условиях. Критерием пригодности таких материалов является отиошение их прочности к весу. Титан и его сплавы используют, когда требуется сочетание минимального веса с высокой прочностью, термической и коррозионной стойкостью. Так, они тнироко применяются для изготовления деталей самолетов, космических аппаратов, ракет, трубопроводов, котлоз высокого давления, для оборудования высокотемпературных процессов в химической и других отраслях промышленности. Одной из наиболее перспективных областей применения титана является судостроение, где решающее значение имеет высокая прочность нри малой плотности и высокая стойкость к коррозии и эрозии в морской воде. Сущестг енное значение имеет использование титана в виде листов для обшивки корпусов судов, литых деталей из титана, выдерживаюнтих длительное пребывание в морской воде, а также для покрытия изнутри смесительных барабанов, предназначенных для перемешивания агрессивных материалов и для других це.тен. В связи с дороговизной листового титана большой практический интерес для судостроительной, химической и других отраслей промышленности представляет применение титана в качестве плакировочного материала для изготовления биметаллических стальных листов. [c.274]

    Успехи в области машиностроения и металлургии, освоившей производство разнообразных сплавов (обладающих химической стойкостью и высокой механической прочностью, устойчивых к износу, к действию высоких температур), а также все расширяющееся применение пластических масс в качестве конструкционных материалов позволили значительно усовершенствовать многие аппараты и машины, используемые в химической промышленности. В частности, были созданы насосы для перекачи-- вания кислот, компрессоры для высоких давлений, высокопроиз- [c.17]

    Основные детали поршневого насоса корпус, поршень, клапаны и сальники. Корпус насоса, состоящий из цилиндра и рабочих камер, крепится на фундаменте, поэтому его выполняют монолитным и жестким. Материалом корпуса обычно служит чугун, однако в крупных насосах высокого давления рабочие камеры изготовляют из стали. Насосы, предназначенные для перекачивания агрессивных химических жидкостей, имеют детали из хромистой, хромоникельмолибденовой или хромонн-келькремнистой стали. В насосах для кислот помимо деталей из коррозионностойких сталей и сплавов используют детали из фарфора, керамики, специальные стойкие покрытия. [c.65]

    В водяных реакторах высокого давления атомных электростанций трубы теплообменников изготавливают в основном из отожженного инконеля 600. Теплоноситель реактора поступает в трубы при 315 С и выходит при температуре на 30—35 °С ниже. Вода, контактирующая с наружной поверхностью труб, проходит подготовку дистилляцией (минимум растворенных солей и кислорода, слабая щелочность создается с помощью NH3). Утоньшение и межкристаллитное КРН труб наблюдается на входных участках вблизи трубной доски в щелях и местах отложения шлама [И ]. Анализ смывов этих отложений показал, что они имеют щелочную реакцию и содержат большое количество натрия. На основании этих результатов для ускоренных испытаний на стойкость к КРН в условиях работы паровых установок сплав помещали в горячие растворы NaOH (290—365 °С). Выяснилось, что термическая обработка инконеля 600 при 650 °С в течение 4 ч или при 700 С в течение 16 ч и более значительно повышает его стойкость к КРН в растворах NaOH [9, 12, 13]. Попутно дости- [c.364]

    Соединения фосфора, например, реагируя с железом, дают сплав, имеющий значительно более низкую температуру плавления, чем железо эвтектика, содержащая 10,2% фосфора, плавится при температуре, которая на 515° ниже температуры плавления железа. Такой сплав, образуясь на поверхности стали, видимо, легче течет в местах действительного контакта в условиях трения и способствует полированию поверхности [13]. Подобным же образом действуют мышьяк и некоторые другие элементы. К. С. Рамайя указывает [14], что для течения микровыступов не обязательно достигать температуры плавления, так как действующее в этих местах высокое давление ведет к пластическому течению. На хорошо полированных поверхностях масляный клин должен образоваться легче и при меньших скоростях относительного перемещения, чем на поверхностях, имеющих многочисленные микровыстуны. Расклинивающее действие разделяет поверхности и предотвращает износ. [c.153]

    Другим промышленным синтезом на основе окиси углерода является непосредственное получение кислот в результате взаимодействия между олефинами, окисью углерода и водой, которое было разработано в лабораториях фирмы Дюпон 10]. Эта реакция тоже требует больших давлений, но ее проводят при значительно более высокой температуре, чем оксосинтез. Обычно работают при давлении 200—1000 ат и 300—400°. Реакция протекает в присутствии кислотных катализаторов, что вызывает необходимость подыскать для изготовления аппаратуры материалы, которые бы были устойчивы к коррозии и одновременно выдерживали высокое давление. В патентах предлагается использовать для этой цели серебро и его сплавы. Из предложенных катализаторов следует упомянуть о фосфорной, соляной и серной кислотах. Этилен легко вступает в реакцию, образуя пропионовую кислоту из пропилена получается изомасляная кислота. Бутилен-2 претерпевает перегруппировку углеродного скелета и превращается в триме-тилуксусную кислоту. Все эти реакции могут быть выражены следующими уравнениями  [c.196]

    Рецензенты кафедра высоких температур Московского института стали и сплавов (зав. кафедрой чл.-кор. АН СССР проф. В. П. Елютин) докт. хим. наук, проф. Н. А. Бенделнани (Институт физики высоких давлений АН СССР) [c.2]

    Применение высокого давления может оказаться очень перспективным при получении твердого металлического водорода. Как известно, при атмосферном давлении водород имеет молекулярное строение и затвердевает при 7 = 14 К. Плотность его в этих условиях равна 0,081 г/см , и он является изолятором. Но пррг достаточно сильном сжатии, когда электронные оболочки оказываются раздавленными, все вещества, как уже отмечалось, должны переходить в металлическое состояние. Расчеты приводят к следующим данным молекулярный водород находится в термодинамическом равновесии с металлическим водородом при ря 260 ГПа, когда плотность металлического водорода равна 1,15 г/см (плотность молекулярного водорода при этом составляет 0,76 г/см ). Возможно, металлический водород окажется сверхпроводником с очень высокой критической температурой порядка 100...300 К. Исключительный интерес представляет то, что водород-металл, возможно, окажется устойчивым (хотя, конечно, метастабнльным, подобно алмазу) при обычном давлении. Пока вопрос об его устойчивости при атмосферном давлении остается открытым. Если этот вопрос решится положительно, то создание металлического водорода и его сплавов явится одной из важнейших проблем современности. [c.163]

    Применение. Титан и его сплавы в связи с их легкостью прочностью, термической и коррозионной стойкостью при меняются для изготовления деталей самолетов, космиче ских кораблей, ракет, подводных лодок, трубопроводов котлов высокого давления, различных аппаратов для хи мической промышленности. Титан широко используется в виде листов для обшивки корпусов судов, обеспечивающих высокую прочность и стойкость в морской воде. [c.110]

    Из данных, приведенных в таблице, видно, что даже при очень высоких давлениях не удается полностью сместить равновесие в сторону образования аммиака. Но нельзя ли применить более активный катализатор, на котором реакция шла бы достаточно быстро при более низких температурах, чем 400Х Этот вопрос привлекает внимание многих исследователей в течение десятков лет в связи с большим значением его для промышленности. Число веществ (различных металлов, их сплавов и других), испытанных как катализаторы данной реакции, исчисляется, вероятно, многими десятками тысяч, но пока проблемы не удалось решить. [c.43]

    Действие электрических приборов основано на использовании пропорциональности между изменением некоторых электрических свойств материалов и изменением давления. Например, омическое сопротивление некоторых сплавов пропорционально давлению окружающей среды это свойство используется при измерении высоких давлений. Величина электрических зарядов, появляющихся на поверхности кристаллического диэлектрика при сжатии и растяжении кристалла, пропйрциональна действующему давлению это свойство используется при измерении быстропеременных давлений. [c.50]

    Наиболее распространенным сплавом типа Ni u является мо-нель, содержащий примерно 65% никеля. Он противостоит всем типам агрессивных атмосфер, нейтральным и кислым растворам солей, например хлоридам, сульфатам и др., исключая азотнокислые соли и хлорид железа. В неокисляющих кислотах очень стабилен. Сплав инконель с содержанием примерно 75% никеля, 15% хрома и 4—6% железа более устойчив в окисляющей среде, чем монель. Его применяют при производстве аппаратуры дл органического синтеза при высоких давлениях в присутствии галогенов, окислов азота или сероводорода. Сплавы типа Ы1Сг известны как нимоник. Он легко поддается ковке и сохраняет свои механические свойства при высоких температурах. Как жаростойкий и жаропрочный материал нимоник применяют главным образом при производстве оборудования и узлов, работающих в продуктах сгорания при высоких температурах. Чаще всего из этого сплава изготовляют камеры и лопатки газотурбинных установок, которые подвержены воздействию температур 700—800° С. [c.37]

    Научно-теоретической базой для дальнейшего развития исследований в области высокотемпературного воздействия водорода на металлы и сплавы явились работы, выполненные в свое время в Государственном институте высоких давлений (Ленинград) Алексеевым, Остроумовым [18], Колбиным [19 ], Ипатьевым и сотр. [ 20, 21], Перминовым [22], впервые создавших комплекс экспериментальных установок для изучения поведения металлов при высоких температурах и давлениях газов. Из зарубежных ученых наибольший вклад в развитие теории водородной коррозии и установление кинетических закономерностей соответствующих процессов внесли Баукло [23] На-уманн [24,25 ], Нельсон [26, 27, 28]. [c.115]

    Учитывая отсутствие данных о растворимости водорода в сталях и сплавах при высоких давлениях, во ВНИИнефтехим была разработана специальная методика [45 ] экспериментального определения констант растворимости в указанных условиях. Насыщение каждой стали и сплава водородом при заданной температуре и давлении до получения равновесного состояния проводилось при различных выдержках . Так, из рис, 1 следует, например, < что в случае стали Х18Н10Т предел насыщения образца i водородом достигается через определенный промежуток времени, зависяышй от температуры насыщения и диамет- [c.116]

    Ионное осаждение в вакууме отличается от предыдущего метода тем, что пары осаждаемого металла или сплава ионизируются в плазме тлеющего разряда, в котором катодом слум<ит испаряемый материал, а анодом — подложка. Нагрев производят различными методами. Пары металла попадают в плазму при сравнительно высоком давлении (0,1—1,0 Па) инертного газа (Не, Аг, Кг). При этом происходит ионизация паров, ионы ускоряются электрическим полем, поток ионов осаждается на подложке. Этот метод — разновидность плазменного напыления. [c.140]

    Для изготовления металлостеклянных и металлокерамических уплотнений (переходов) обычно применяются аустенитные тройные сплавы Ре—N1— Со, имеющие коэффициенты термического расширения, близкие к соответствующим параметрам стекла или керамики. В работе [117] было исследовано поведение в условиях наводороживания и высокого давления водорода (69 МПа) двух таких сплавов Ре—29 N1—17 Со (ковар) и Ре— 27 N1—25 Со (керамвар), пределы текучести которых после отжига составили 320 МПа. Данные для второго сплава представлены на рис. 20. Оба сплава полностью сохраняли пластичность при испытаниях в водороде [117]. Их структура представлена довольно стабильным аустенитом и не должна проявлять склонность к непланарному скольжению. Этот вопрос следует исследовать в рамках общей проблемы корреляции между типом скольжения и стойкостью к индуцированному водородом охрупчиванию. [c.78]

    N1—20Сг (содержащий 2 об. % дисперсоида УаОз, а также 2,2% и 1,17о А1 для получения у -фззы [294] см. рис. 43) был исследован в присутствии водорода. Этот сплав, названный Инконель МА 753 имеет предел текучести при комнатной температуре около 900 МПа и практически не испытывает потерь пластичности при экспозиции в водороде при высоком давлении или при наводороживании [259] (рис. 44). [c.118]


Смотреть страницы где упоминается термин Сплавы ля высоких давлений: [c.223]    [c.148]    [c.155]    [c.59]    [c.292]    [c.149]    [c.143]    [c.16]    [c.7]    [c.112]    [c.113]   
Краткий справочник химика Издание 6 (1963) -- [ c.508 ]




ПОИСК







© 2025 chem21.info Реклама на сайте