Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Муравьиная кислота, образование

    Бон и Гилл [6] смогли осуществить реакцию смесей этан — кислород при времени реакции порядка 30 мин. и более в статической системе при 316° С. Б этих условиях основным продуктом частичного окисления был формальдегид, кроме него, были также обнаружены в небольших количествах ацетальдегид и муравьиная кислота. Образование этилена при такой низкой температуре было незначительным. Реакции предшествовал длительный индукционный период, который можно было резко снизить путем добавления двуокиси азота или альдегидов. Сокращению индукционного периода способствовало такн е увеличение общего давления или температуры. Анализы, проведенные на различных стадиях быстрой реакции, показали, что концентрация альдегида со временем проходила максимум, и продукты частичного окисления быстро разрушались после поглощения большей части кислорода. [c.327]


    Наряду с окисью и двуокисью углерода возможно образование других соединений С1 метана, метилового спирта и муравьиной кислоты. Образование этих продуктов происходит через свободные радикалы. Получившийся атом С соединяется с водородом, кислородом или азотом полученный радикал реагирует дальше с образованием более сложных молекул, например, двуокиси углерода или (через радикал мети.т) метилового спирта и других органически.х веществ. [c.260]

    В опыте без добавления к продукту гидроформилирования муравьиной кислоты образование формиата кобальта не наблюдали. [c.102]

    Наличие муравьиной кислоты, образование которой не мог объяснить Чертков [30], является еще одним звеном, подтверждающим возможность преимущественной атаки кислородом второго атома С в цепи углеводорода. [c.26]

    Муравьиная кислота, образование окислением углеводородов 263— 265, 270, 271. [c.329]

    Окисление пропана кислородом (7,9% в смеси) при 170 ат и 350 " приводит к образованию метанола, этанола, пропанола, ацетальдегида, формальдегида, ацетона, уксусной и муравьиной кислот [5]. Давление при окислении пропана, -по-видимому, благоприятствует атаке кислорода по метиленовой группе (табл, 116). [c.434]

    При использовании метода окисления приходится работать при составе смеси за нижним пределом воспламенения 6% (об.) СНзОН, т. е. с весьма разбавленной паровоздушной смесью. При дегидрировании первичных спиртов, инициируемых кислородом, все побочные реакции с образованием окислов углерода, метана, муравьиной кислоты и воды, протекают не столь заметно. Это позволяет вести процесс при температуре 500—600 °С и большой скорости реакции с конверсией 85%. [c.324]

    Образование газа. Газы, образующиеся при крекинге, состоят из осколков больших молекул. Большое увеличение выхода газа с возрастанием температуры, возможно, является результатом крекинга первоначальных продуктов реакции. На состав газа влияют прежде всего условия его образования и, в меньшей степени, — характер исходного сырья. Газы состоят главным образом из углеводородов, хотя в них могут присутствовать и окись и двуокись углерода, сероводород, кислород и водород. Были обнаружены даже уксусная и муравьиная кислоты [171]. [c.316]

    Однородные молекулы также могут давать димеры и полимеры. В отдельных случаях такие образования не имеют характера временных статистических сочетаний молекул, а могут рассматриваться как новые молекулы, прочность которых, естественно, также весьма различна. Так, для муравьиной кислоты характерен димер [c.164]


    При жидкофазном окислении низших парафиновых углеводородов наряду с другими продуктами образуется муравьиная кислота, которая сильно корродирует аппаратуру. Сообщается, что соединения висмута уменьшают ее образование, не изменяя при этом выхода других ценных кислородсодержащих соединений [120]. [c.97]

    Теплота сгорания СНзОН(ж.) с образованием газообразного диоксида углерода и жидкой воды при 298 К равна 715 кДж моль а теплота сгорания муравьиной кислоты, НСООН (ж.), составляет 261 кДж моль Вычислите при 298 К теплоту реакции [c.112]

    Что происходит с органическими соединениями в пластовых водах Какова их дальнейшая судьба Во-первых, идут химические превращения. Самые обычные органические соединения в водах — жирные кислоты, наиример муравьиная кислота, уксусная кислота и др. Некоторые из этих кислот под действием повышенных температур и других условий могут частично превращаться в нефтяные углеводороды. Таким путем запас вещества, который пригоден для образования нефти, может пополняться уже в водной среде коллекторских пород. Опять мы наблюдаем благотворное влияние водной среды и самой воды на возникновение нефти. [c.41]

    Все известные трехкомпонентные гетероазеотропы являются положи-гельными азеотропами, температура кипения которых — наименьшая в системе. Таковы, в частности, гетероазеотропы, образованные этиловым, изопропиловым, пропиловым и изобу-тиловыми спиртами, углеводородами с температурами до 100° и водой. В тройных системах, компоненты которых обладают ограниченной взаимной растворимостью, могут образовываться седловидные азеотропы. Такие азеотропы имеются, например, в упоминавшейся системе ацетон—хлоро-форм—вода и системе муравьиная кислота—вода—дихлорэтан 80]. Однако во всех известных случаях точка седловидного азеотропа лежит в гомогенной области. [c.76]

    Из жидких кислот наибольшую опасность представляют, по-видимому, муравьиная и уксусная кислоты. Муравьиная кислота, как видно из ее названия, присутствует в муравьином яде. Она вызывает образование сильных волдырей на коже. Менее опасна уксусная кислота, однако попадание больших количеств этого вещества на кожу вызывает весьма болезненные ожоги, если сразу же эти места не обработать. Муравьиная и уксусная кислоты производятся в больших количествах и хранятся в резервуарах в таких объемах, которые в случае аварии могут привести к гибели многих людей. [c.448]

    МЭА сравнительно легко окисляется сначала с образованием а-аминоальдегида, затем глицина, гликолиевой, щавелевой и, наконец, муравьиной кислот [//]. Эти кислоты также приводят к коррозии с образованием нерастворимых солей железа. [c.19]

    На первой стадии изопропилбензол окисляется кислородом воздуха с получением гидроперекиси. Процесс проводится в отсутствие катализаторов, а для инициирования реакции окисления к сырью добавляется небольшое количество гидроперекиси. На второй стадии гидроперекись разлагается в присутствии сильной кислоты с образованием фенола и ацетона, а также некоторого количества муравьиной кислоты, а-метилстирола и смолообразных продуктов. [c.184]

    Алкилнафталины взаимодействуют с формальдегидом в присутствии кислых катализаторов (например, муравьиной кислоты) с образованием термопластичных смол. [c.168]

    СНзО- СНзОН - НСНО - НСООН - СОг Вследствие этого селективность окисления ИПБ до ГП не превышает 95%. С увеличением температуры и степени конверсии в реакционной массе накапливается ГП и усиливаются побочные реакции его разложения. Во избежание этого степень конверсии ИПБ не должна превышать 0,3 дол. единиц. Для нейтрализации муравьиной кислоты, образующейся в качестве побочного продукта, окисление проводят в водно-щелочной эмульсии (раствор карбоната натрия), что позволяет интенсифицировать основную реакцию образования ГП (а). Поэтому оптимальными условиями окисления ИПБ до ГП являются температура 120—130 С, давление 0,5—1 МПа, pH среды 8,5—10,5. В этих условиях содержание ГП в реакционной смеси составляет 25% масс. Процесс окисления ИПБ ингибируется такими веществами как фенолы, алкены и сернистые соединения. Поэтому исходный ИПБ подвергается тщательной очистке от примесей. [c.358]

    Известно, что бензин прямой гонки под действием света и воздуха при обыкновенных температурах- приобретает кислую реакцию и способность восстанавливать азотнокислое серебро, что указывает на образование муравьиной кислоты. Наряду с этим в бензине получается полутвердый и очень тягучий -осадок уд. веса 1,0425, содержащий 62,57 /о С, 9,13< /о Н 28,Зо/ О. Эти продукты не появляются в бензине прямой гонки при хранении его в темноте. [c.150]

    Если в присутствии кислотных катализаторов окись углерода реагирует со спиртами при высоких температуре и давлении с образованием карбоновых кислот, в присутствии нейтральных или окисных катализаторов в тех же условиях получаются эфиры муравьиной кислоты [31]  [c.347]


    Д0°8оо реакции образования муравьиной кислоты из простых веществ. Результаты сравнить с ДС°8(ю = — 71 955 кал, приводимой в [9]. [c.157]

    Нагревание щавелевой кислоты приводит к образованию муравьиной кислоты, но с незначительным выходом  [c.248]

    Свойства. Безводная муравьиная кислота является прозрачной, бесцветной, легко подвижной жидкостью, обладающей очень острым запахом на кожу действует разъедающе, с образованием пузырей. Она является наиболее сильной из всех жирных кислот (см. константы диссоциации, стр. 243) (т. кип, 100,67760 мм). Из водных растворов муравьиной кислоты нельзя фракционированной перегонкой получить безводную кислоту, [c.248]

    Г ероин, аспирин, сложные эфиры, муравьиная кислота Образование железной солн гидроксамовой кислоты ,394, 395, 457, 492 [c.629]

    Если в парах метилового спирта имеется кислород, то образуются [93] такие продукты, как формальдегид (С = 4,28), перекись водорода (О = 2,89) и водород О = 1,41), этилен-гликоль не синтезируется (результаты даны для аэрированного пара при у-облу-чении). В этих же условиях возникает небольшое количество муравьиной кислоты, образование которой зависит от концентрации кислорода в спирте. Лихтин и др [96] также нашли муравьиную кис- [c.310]

    При нагревании аммонийных солей слабых органических кислот до 120° остаются соответствующие свободные кислоты. В отличие от них аммонийные соли сильных и средних по силе кислот устойчивы или разлагаются лишь в незначительной степени. Исключением является формиат аммония, который полностью разлагается, хотя муравьиная кислота является сильной кислотой. Это отклонение от общего правила объясняется летучестью муравьиной кислоты. Образование устойчивых к нагреванию аммонийных солей можно легко обнаружить выпариванием досуха исследуемого вещества с аммиаком и последующим кратко рем.нным нагреванием до 120" . Положительная реак ция—образование красно-коричневого осадка HgJ2 HgNH,J при действии реактива Несслера—указывает на присутствие сильных или умеренно сильных органических кислот. [c.155]

    Задерживающее влияние на дальнейшее окисление бензальдегида могла оказать муравьиная кислота. Образование ее в данном случае могло итти или по пути разложения дигидроперекиси, или вследствие разложения щавелевой кислоты (разлагается при 150—200° по уравнению НООС—СООН = = НСООН -f СО). [c.297]

    Полученная таким способом газовая смесь поступает в реакционную трубчатую печь, в которой происходит образование формальдегида (рис. 82). Газ, отдавший свое тепло в теплообменнике, отмывается водой от формальдегида и после того, как будет отобрана часть метана для обогрева печи, возвращается в процесс. Водный раствор формальдегида (5—10% СН2О) нейтрализуют, чтобы связать муравьиную кислоту, присутствующую в небольших количествах, и затем перегоняют под давлением. Получается 34%-ный раствор формальдегида, содержащий 3% метанола. Иэ 203,3 нм метана получают в час 26,4 кг 100%-ного формальдегида, т. е. 9, 7% от теоретического. Этот процесс был исследован затем и в США [18]. [c.439]

    Коррозия, как следствие образования муравьино. кислоты, проявилась также при ректификации формаль дегида в цехе получения формалина. При окислени метанола получается формальдегид с большим содер жанием исходного продукта, являющегося вредно примесью. Удаление метанола йз формальдегида в вод ном растворе производится в ректификационной колон не, изготовленной из нержавеющей стали. Дефлегматор этой колонны были изготовлены из углеродистой стали [c.98]

    Реакция образования дтуравьиноп кислоты из водорода и углекислоты была исследована Бредигом, Картером и Эндерли [34] в интервале 20— С в присутствии палладиевой черни в качестве катализатора. Опыты этих авторов бг.ши проведены под давлением выше атмосферного в специально приспособленном автоклаве с мешалкой, футерованном серебром. В автоклав загружали муравьиную кислоту и добавляли смесь водорода и углекислоты под давлением (табл. 9). Равновесие было исследовано с, двух сторон. Для этой цели исходные газовые смеси готовили близкими по составу к равновесным и меняли направление реакции, изменяя начальное давление. [c.358]

    Термическая стабильность полисульфидных эластомеров определяется природой полимерной цепи, а также примененной системой отверждения. Температурные пределы эксплуатации вулканизатов тиоколов ограничиваются наличием ОСЫзО-групп в основной цепи полимера. При 150 °С наблюдается гидролиз этих групп с образованием формальдегида, который восстанавливает дисульфидные группы полимера до тиола и муравьиной кислоты [35]  [c.567]

    В указанном процессе наряду с другими продуктами образуется муравьиная кислота, которая, накапливаясь в абсорбере, корродирует аппаратуру, а также способствует образованию ацеталей, что ведет к снижению выхода формальдегида. Для уменьшения количества муравшной кислоты на пути циркулирующего потока формальдегидного раствора устанавливают ионнообменные аппараты, в которых происходит связывание муравьиной кислоты, или добавляют в рециркулирующий поток формальдегидного раствора 20%-ный раствор каустической соды. Второй метод более дешевый. [c.91]

    Восстановление ароматических (в том числе гетероциклических) хлоридов или бромидов водными формиатами в присутствии катализатора гидрирования и межфазного катализатора описано в патенте [553]. Примером является восстановление о-хлорнитробензола, который далее дегалогенируется до анилина. Эта реакция осуществляется на поверхности раздела фаз, о чем свидетельствует тот факт, что анионные поверхностно-активные реагенты также оказывают каталитическое действие. Другая группа исследователей [1616] использовала систему муравьиная кислота/триэтиламин при 100 °С для селективного восстановления с помощью Р(1/С одной из нитрогрупп до аминогруппы в полинитробензолах. Примерами являются 3-нитроанилин (77%), 2-амино-4-нитрофенол (57%), метил-З-амино-5-нитробензоат (65%)- Подобная же смесь реагентов была использована а) для восстановления фенила или двойной связи в сопряженных алкинах с образованием г ыс-алкенов и алканов (48—84%) и б) для гидрогенолиза третичных алкиламинов (61—93%) [1617]  [c.377]

    Например, продуктами гидроформилирования пропена, кроме С -альдегидов и спиртов (н- и зо-бутилового), являются С5-СОЛИ или эфиры муравьиной кислоты, Св-сложные эфиры, альдегиды или спирты, Св-простые эфиры, Сд- эфироальдегиды и эфироспирты и, возможно, (З з-ацетали, образованные путем следующих реакций  [c.195]

    Большое развитие вопросы связи каталитических свойств твердого тела с энергетическими характеристиками реакции и самого твердого тела юлучил 1 в работах Борескова [37], Ройтера [38] и Захтлера [34]. Боресков при этом исходит из предпосылки, что энерг я связи кислорода с катализатором в поверхностном слое окисла входит слагаемым в велич 1ну энергии активащш реакци окисления. Захтлер, изучая реакцию разложения муравьиной кислоты на металлах, получил четко выраженную вулканообразную кривую активности катализаторов 0 те Лоте образования формиатов металлов, промежуточное образование которых было доказано ИК С1 ектрами. Более подробно связь термодинамических араметров с каталитической активностью рассмотрена в главе IV в связи с про-блемо одбора катализаторов. [c.32]

    Образование этилового эфира муравьиной кислоты при 303 К вротекает по уравнению реакции первого порядка [c.355]

Рис. 16. Данные о равновесии между жидкостью и паром в системах, образованных муравьиной кислотой, водой и солями х —относительная концентрация мугавьи-ной кислоты (без учета КаНСОз) Рис. 16. Данные о <a href="/info/333236">равновесии между жидкостью</a> и паром в системах, <a href="/info/423665">образованных муравьиной кислотой</a>, водой и солями х —<a href="/info/13570">относительная концентрация</a> мугавьи-ной кислоты (без учета КаНСОз)
    Согласно Хунсманну и Суммроку [39 ] при разделении тройной смеси вода—муравьиная кислота—уксусная кислота следует ожидать образования бинарного (В) высококипящего азеотропа 4ип = 107,65 °С, состоящего из 56,7% (мол.) муравьиной кислоты и 43,3% воды и тройного (Т) азеотропа (107,1 °С) состоящего из 39,3% (мол.) воды, 48,2% муравьиной кислоты и 12,5% уксусной кислоты. Весь интервал концентраций трехкомпонентной смеси можно разделить на четыре отдельных области перегонки (рис. 225). Смесь обезвоживают азеотропной перегонкой с одним из высших эфиров. [c.305]

    Взаимодействие оксида углерода со спиртами при катализе соответствующим алкоголятом происходит путем его атаки молекулой СО с промежуточным образованием карбапиона, который отрывает протон от молекулы спирта, регенерируя катализатор и образуя эфир муравьиной кислоты (формиат)  [c.545]

    Невит и Блох изучили также окисление этана при давлении 15—100 атм и температуре 260—360 . В продуктах реакции, помимо воды, метилового спирта, формальдегида, муравьиной кислоты и ацетальдегида, в преобладающем количестве находились этиловый спирт и уксусная кислота. Попышение давления благоприятствовало образованию веществ, получающихся без разложения молекулы углеводорода. Впоследствии в Англии и Канаде этот метод окисления под высоким давлением и при отношении углеводород кислород = 9 1 стал промышленным способом получения метилового и эти.чового спиртов из метана и этана. [c.349]

    Катализаторами реакции окисления ИПБ являются резинаты и нефтенаты кобальта (II) и марганца (II). При этом, одновременно с основной реакцией (а) протекают побочные реакции образования диметилфенилкарбинола, ацетофенона и муравьиной кислоты, как это показано на схеме  [c.358]

    При использовании чистых спиртов как в карбюраторных, так и в дизельных двигателях отмечены повышенные износы деталей цилиндроноршневой группы. Увеличение износа прп работе двигателя на спиртах возможно по ряду причин, основные из которых попадание в цилиндры значительного количества неиспарившегося спирта и смыв им смазки, ухудшение смазки из-за образования на трущихся поверхностях спирто-водно-масляной эмульсии, взаимодействие спиртов с присадками масел и снижение их эффективности. Кроме того, спирты и их коррозионно-агрессивные продукты сгорания (формальдегид, ацетальдегид, муравьиная кислота) воздействуют на такие металлы, как алюминий и сплавы свинца и меди. Как показали исследования, наибольший износ двигателя наблюдается при использовании метанола. При эксплуатации двигателя на этаноле при нормальных температурах износ ниже, однако он значительно увеличивается на низкотемпературных режимах работы. [c.154]


Смотреть страницы где упоминается термин Муравьиная кислота, образование: [c.142]    [c.274]    [c.123]    [c.80]    [c.487]    [c.475]    [c.294]    [c.248]   
Технология сульфитов (1984) -- [ c.135 ]




ПОИСК





Смотрите так же термины и статьи:

Муравьиная кислота



© 2025 chem21.info Реклама на сайте