Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двигатель, исследование сгорания

    В работе [92] указывается, что на деталях с более низкой температурой, как правило, наблюдается повышенное нагарообразование. Это подтверждается результатами исследований и других авторов, которыми установлено, что в одноцилиндровом предкамерном двигателе с отношением хода поршня к диаметру цилиндра 5/Дц=1,21 (115/95) и степенью сжатия е=19 увеличение температуры стенок камеры сгорания от 200 до 550°С привело к уменьшению отложений нагара в 30 раз. Эта особенность характерна для двигателя данной конструкции и режима работы его. Ее нельзя распространять на все типы двигателей внутреннего сгорания. [c.44]


    Дисперсность распыливания жидкостей форсунками, применявшимися для испарительного охлаждения воздуха и газов в компрессорах и двигателях внутреннего сгорания, измеряли на установке, показанной на рис.45. Опытными жидкостями являлись вода, этиловый спирт, дизельное топливо летнее и масло для газотурбинных двигателей. Результаты исследований изложены в работе [42]. [c.94]

    Исследования [94] относятся к изучению нагарообразующих свойств масел, применяемых в поршневых двигателях внутреннего сгорания, причем во всех случаях исследований на интенсивность нагарообразования масел влияло применяемое топливо — бензин. Кроме того, как было отмечено выше, условия использования масел в поршневых ДВС значительно отличаются от условий применения масел в поршневых компрессорах. Следовательно, для проведения цикла работ по определению нагарообразующих свойств масел в условиях поршневых воздушных компрессоров необходимо использовать полноразмерные компрессорные машины или специальные установки, которые могли бы воспроизвести реальные условия применения масел в компрессорах. [c.300]

    Леонов О. Б. Исследование испаряемости дизельного топлива.— В кн. Двигатели внутреннего сгорания/ — Труды МВТУ им. Баумана, вып. 25. 1954, с. 35—54. [c.350]

    История развития квалификационных методов оценки эксплуатационных свойств нефтепродуктов, по мнению К. К. Папок [18], началась именно с нефтяных топлив в начале XX века, когда на пути развития бензиновых двигателей внутреннего сгорания возникла проблема детонационного сгорания топлива. Первым квалификационным методом был метод определения октановых чисел бензинов на одноцилиндровой установке Во-кеш, разработанной в 1927 г. Как известно, метод октановых чисел получил распространение во всем мире, с ним было связано проведение широких исследований и решение серьезных проблем в области детонации. В 40-х годах в связи с необходимостью предотвращения загрязнения деталей двигателей углеродистыми отложениями была начата интенсивная разработка квалификационных методов оценки качества смазочных масел. [c.15]

    В результате исследований рабочих условий поршней в двигателях внутреннего сгорания были выявлены требования, предъявляемые к точности их геометрической формы, и сочтено необходимым профилировать юбку по специальному копиру (фиг. 21). [c.76]

    Проведенные в СССР и за рубежом исследования выявили специфические особенности производства и применения альтернативных моторных топлив в двигателях внутреннего сгорания, сложность определения экономических показателей этих процессов. Результаты сравнения экономичности производства синтетических топлив из различного сырья зачастую носят противоречивый характер [182]. В связи с этим возникла необходимость в разработке единой методики оценки эффективности производства и применения альтернативных моторных топлив [13, 183]. Следует подчеркнуть, что если исследования технической возможности производства альтернативных моторных топлив ведутся в течение длительного времени, то экономика их производства носит ориентировочный характер, а влияние социальных и экологических факторов при производстве и применении синтетических топлив исследовано в еще меньшей степени. [c.193]


    Распределение общей работы трения между элементами компрессора зависит от числа ступеней, схемы компрессора, его производительности, конечного давления и т. п. Распространяя на компрессоры данные, известные из исследований крупных двигателей внутреннего сгорания, и учитывая некоторые частные результаты, полученные в исследованиях компрессоров, можно принять следующее примерное распределение работы трения между отдельными элементами компрессора (в %)  [c.172]

    Возникая во всасывающем трубопроводе I ступени, резонансные колебания отражаются на производительности компрессора. Иногда этим обстоятельством пользуются для ее увеличения, причем явление носит название резонансного нли акустического наддува. Резонансный наддув интересен и для двигателей внутреннего сгорания, где служит средством повышения мощности. В связи с этим он явился предметом многих исследований. [c.272]

    Помимо результатов непосредственных наблюдений за компрессорами, показательны также исследования двигателей внутреннего сгорания, проведенные на Горьковском автозаводе. Согласно этим исследованиям, ири повышении температуры воды в охлаждающей рубашке цилиндров от 30 до 80 С износ цилиндров уменьшается в 5—6 раз. Дальнейшее повышение температуры до 160° С величины износа не изменяет. Установлено также, что при воздушном охлаждении цилиндры имеют меньший износ, чем при водяном, вследствие более высокой температуры стенки. [c.320]

    Григорьев М.А., Рыбаков В.К- К вопросу определения дисперсного состава загрязнителей для испытания фильтров двигателей внутреннего сгорания // Исследование, конструирование и расчет тепловых двигателей внутреннего сгорания. М НАМИ. 1987. С. 39 — 49 (Тр. НАМИ). [c.197]

    Решению некоторых вопросов, связанных с получением моторных топлив из альтернативных источников сырья, исследованию их техникоэкономических показателей и особенностей рабочего цикла двигателей внутреннего сгорания посвящена данная монография. [c.5]

    Первоначально в термодинамике изучались, главным образом, соотношения между теплотой и механической работой, однако область практического применения термодинамического метода исследования сравнительно быстро расширилась. В современной науке и технике на основе законов термодинамики исследуются разнообразные физические и химические явления, в том числе процессы в различных электрических и холодильных машинах, паровых турбинах, двигателях внутреннего сгорания, гальванических элементах, процессы электролиза, различные химические реакции, атмосферные явления, процессы, протекающие в земной коре и т. д. [c.77]

    Исследование свойств бензинов, применяемых в качестве горючего для двигателей внутреннего сгорания, показало, что эти свойства во многом зависят от структуры углеводородов, входящих в [c.65]

    Маврин В.Ю., Коваленко А.П. и др. Исследование литийорганических соединений в качестве регуляторов 1 орения в двигателях внутреннего сгорания И Нефтепереработка и нефтехимия, 2001, № 12, С. 23-25. [c.65]

    Стандартная установка для определения октановых чисел (рис. 50) была выбрана в 30-х годах в результате специальных исследований. Она представляет собой одноцилиндровый четырехтактный двигатель внутреннего сгорания, соединенный ременной передачей с тормозящим асинхронным мотором-генератором и оборудованный специальным карбюратором, аппаратурой для замера детонации и системами зажигания, охлаждения, смазки, подогрева воздуха или рабочей смеси, подогрева масла и кондиционирования воздуха по влажности. Основной особенностью двигателя является переменная степень сжатия. Изменение степени сжатия достигается подъемом и опусканием с помощью червячной передачи цилиндра двигателя по специальной направляющей. Для этого цилиндр отливается в одно целое с головкой двигателя и рубашкой для охлаждающей жидкости. Переменная степень сжатия позволяет создавать стандартный дето- [c.164]

    Метанол по ряду важных характеристик превосходит лучшие сорта углеводородных топлив. Однако он обладает и рядом недостатков высокой гидрофильностью, токсичностью, агрессивностью по отношению к некоторым металлам и пластикам. Использование чистого метанола в качестве топлива для двигателей внутреннего сгорания потребует существенной реконструкции автомобилей. Исследования показали, что КПД имеющихся мета-нольных двигателей на 20% выше, чем КПД традиционных. Причины более высокого КПД и вызванного этим уменьшенного расхода топлива можно объяснить более высокой степенью сжатия (1 13), более полным сжиганием топлива, более высокой скоростью сгорания. [c.127]

    Инерционный метод [187] основан на распределении капель пп размерам при повороте потока. Метод стандартизован в США для исследования распыления форсунками двигателей внутреннего сгорания. При соответствующей доработке метод может быть использован для исследования распыления пневматическими форсунками. [c.80]


    Монография посвящена исследованию и разработке методов расчета теплообмена в поршневых машинах (двигателях внутреннего сгорания и компрессорах). В ней рассмотрены внутренний (внутри цилиндра) и внешний (отвод теплоты от камеры сжатия — горения) теплообмен и контактный теплообмен описана математическая модель движения заряда в цилиндре и на ее основе на базе теории пограничного слоя определены локальные мгновенные значения коэффициентов теплоотдачи конвекцией изложены особенности лучистого теплообмена в цилиндрах ДВС приведена методика расчета внешнего теплообмена в поршневых машинах. [c.2]

    Термосифон представляет собой полностью или частично замкнутую систему, заполненную жидкостью, которая циркулирует в ней под действием сил термической конвекции. Неограниченные свободноконвективные контуры, в которых жидкость нагревается снизу, а охлаждается сверху, часто встречаются в атмосферных и океанических течениях. Такого рода течения уже долгое время привлекают внимание исследователей в связи с их многочисленными техническими приложениями, включая охлаждение газовых турбин, электрические машины, ядерные реакторы, двигатели внутреннего сгорания, получение геотермальной энергии, термосифонные солнечные водоподогреватели, а также различные применения в производственных процессах. Опубликован обширный обзор термосифонной техники [130]. В нем обсуждаются многие возможные схемы термосифонов, а также описываются результаты различных исследований гидродинамики и теплопередачи в этих устройствах. [c.302]

    Надежность масляного слоя увеличивается с повышением скорости вращения вала и вязкости масла. Однако при этом увеличиваются затраты энергии на преодоление внутреннего трения. По этой причине для каждого конкретного случая вязкость должна быть выбрана наименьшей, но обеспечивающей жидкостное трение. Так, например, расчетами и исследованиями установлено, что для подшипников коленчатого вала двигателей внутреннего сгорания при рабочих условиях эта величина должна быть больше [c.143]

    За рубежом на современных двигателях широко распространена полнопоточная фильтрация масла, при которой все масло, поступающее в главную магистраль, подвергается тонкой очистке. Проведенными исследованиями доказано, что применение на двигателях внутреннего сгорания полнопоточной тонкой фильтрации масла приводит к снижению износа основных деталей в 2— 3 раза по сравнению с частичной тонкой фильтрацией. [c.216]

    Здесь а — скорость звука (порядка 1000 м/с), а О — соответствующий поперечный размер, например диаметр полости камеры сгорания (0,01ч-1 м). Поперечные моды колебаний имеют частоты порядка 500—50 000 Гц в зависимости от размера двигателя. Исследования поперечных мод колебаний сопряжены со значительными экспериментальными трудностями вследствие того, что к датчикам предъявляются требования высокой чувствительности (обязательно использование пьезоэлектрических датчиков) и необходимости их тщательной установки, исключающей дополнительное демпфирование или возмущение акустического поля. [c.126]

    В последние годы в связи с широким развитием исследований по точному определению физических свойств углеводородов и по изучению их окисления и поведения в двигателях внутреннего сгорания многие углеводороды были получены в очень чистом виде. Ббльшая часть этой препаративной работы была проведена по Проектам 6 и 44 Американского нефтяного института. Работа, проводившаяся Национальным бюро стандартов, включала получение и исследование углеводородов для Национального консультативного комитета по аэронавтике и Исследовательской лаборатории воздушных двигателей. В Англии во время второй мировой войны ряд углеводородов готовился в лабораториях некоторых университетов и нефтяных компаний при координации этой работы со стороны Технического консультативного комитета Министерства воздушных сил. Впоследствии эта работа была продолжена группой исследования углеводородов Института нефти. [c.398]

    Неизвестно, что действительно происходит при детонации. Однако спектрографическими и фотографическими исследованиями было установлено, что при нормальной вспышке в двигателе внутреннего сгорания возникает узкая идеально выпуклая волна горения, которая движется вдоль камеры сгорания в направлении от свечи зажигания волны имеют практически постоянную скорость (до 75 м1сек на величину скорости влияют различные факторы). При детонации фронт пламени изменяется только во время сгорания последней части сырья. Кроме того, пламя передвигается гораздо быстрее — со скоростью около 300 м сек. Очевидно также, что детонация возникает только после того, как большая часть горения завершена. [c.405]

    Исследование ЦТМ показало, что это соединение в концентрации до 1 г/кг не повышает токсичность бензина. Это — решающее преимущество ЦТМ в сравнении с ТЭС. Есть у марганцевых антидетонаторов недостатки. Важнейшим из них является способность нагара, остающегося в двигателе после сгорания бензинов с ЦТМ, вызывать перебои в работе свечей зажигания. В настоящее время продолжаются исследования по изысканию преобразователей нагара, улучшению конструкции свечей зажигания, применению новых материалов для изоляторов и электродов свечей и т. д. Вместе с тем опубликованы сообщения о выпуске в США товарных бензинов, содержащих МЦТМ в небольших концентрациях, причем, как отмечено, малые концентрации не влияют на работоспособность свечей зажигания. [c.170]

    Позднее, с открытием и исследованием электрической, лучистой, химТ1ческой и других форм энергии, постепенно в круг рассматриваемых термодинамикой вопросов включается и изучение этих форм энергии. Быстро расширялась и область практического применения термодинамических методов исследования. Уже не только паровая машина и процессы превращения механической энергии в теплоту исследуются на основе.законов термодинамики, но и электрические машины, холодильные машины, компрессоры, двигатели внутреннего сгорания, реактивные двигатели. Гальванические элементы, а также процессы электролиза, различные химические реакции, атмосферные явления, некоторые процессы, протекающие в растительных и животных организмах, и многие другие исследуются не только в отношении их энергетического баланса, но и в отношении возможности, направления и предела самопроизвольного протекания процесса в данных условиях. Они исследуются также в отношении установления условий равновесия, определения максимального количества полезной работы, которая может быть получена при проведении рассматриваемого процесса в тех или иных условиях, или, наоборот, минимального количества работы, которое необходимо затратить для осуществ- [c.178]

    К настоящему времени известно небольшое число экспериментальных исследований работы поршневых двигателей внутреннего сгорания на ацетилене, которые выполнены преимущественно на одноцилиндровых установках FR. Особенностью ацетилена является высокая склонность к детонации, исключающая возможность работы двигателя на богатых и стехиометрических смесях. Вместе с тем широкие концентрационные пределы воспламенения и горения ацетилено-воздушных смесей позволяют организовать работу двигателя при пониженных степенях сжатия за счет ультраобеднения топливной смеси. Согласно экспериментальным данным, в диапазоне е = = 4—6 стабильная работа установки FR обеспечивается прн а=1,45—2,4, причем с повышением степени сжатия граница бездетонационной работы двигателя смещается в бедную область. В этом случае потери мощности по сравнению с работой на бензине составляют около 30% нри снижении индикаторного к. п. д. на 10—12% [179]. [c.191]

    Как было отмечено в разделе 1.1, фазовое разделени бензино-метанольных смесей в прису1ствии воды - одна из наиболее серьезных и трудно устранимых проблем при применении их в качестве топлива для двигателей внутреннего сгорания. Для предотвращения этого нежелательного явления применяются различные стабилизаторы. Исследованиями установлено, что содержание стабилизатора в бензиноспиртовой смеси зависит от множества факторов и колеблется в широких пределах. [c.16]

    Исследование токсичных характеристик отработавших гачов двигателя внутреннего сгорания 2.7.1. Характеристика токси1Шых компонентов отработавших газов Процесс сгорания в двигателях внутреннего сгорания развивается в нестационарных условиях в течение коротких отрезков времени 6 небольших замкнутых объемах, окруженных относительно холодными стенками. Начинается сгорание в процессе сжатия при высоких давлении и температуре и завершается в такте расширения, когда давление и температура быстро уменьшаются. [c.79]

    Полученные результаты аналогичны экспериментальным данным, представленным в работах [4,8] по исследованию беюнно-спиртовых смесей в двигателях внутреннего сгорания. [c.82]

    В качестве объектов исследования были выбраны образцы серийных и перспективных бензостойких резин, используемых для уплотнительнопрокладочных изделий двигателя внутреннего сгорания,и неметаллические конструкционные материалы системы питания автомобилей серии "ГАЗ". [c.97]

    Наконец, третьей, также первоочередной задачей, которая в середине 30-х годов встала перед исследованием, являлось выяснение химической и кинетической природы отличий, установленных к этому времени для верхне- и нижнетемпературных процессов окисления углеводородов. Помимо интереса познавательного характера, немаловажной причиной остроты, которую приобрел этот вопрос, явилось уже давно имевшееся в литературе представление о связи детонации в двигателе внутреннего сгорания с процессами медленного окисления, протекающими впереди фронта пламени в еще не сгоревшей части топливо-воздушно смеси. Эта идея, после открытия явления двухстадийного низкотемпературного воснламенения была рядом авторов расширена дополнительным и впоследствии экспериментально подтвержденным предположением о том, что в случае детонационного режима предпламенное окисление топлива в двигателе протекает по механизму нижнетемпературного окисления. Это несомненно придало актуальность задаче изучения сходства и различия в химизме процессов, составляющих содержание верхне- и нижнетемпературного окисления углеводородов. [c.93]

    В. Я. Штерном было проведено аналогичное исследование нреднламенных процессов в двигателе внутреннего сгорания. В отличие от результатов Эгертона, Смита и Уббелодэ органические перекиси не были найдены ни при нормальном, ни при детонапион-иом режимах. В обоих случаях из перекисей была констатирована только перекись водорода. [c.113]

    Окисление — восстановление — один из важнейших процессов природы. Дыхание, усвоение углекислого газа растениями с выделением кислорода, обмен веществ и ряд биологических процессов в основе своей являются окислительно-восстановительными реакциями. Сжигание топлива в топках паровых котлов и двигателях внутреннего сгорания, электролитическое осаждение металлов, процессы, происходящие в гальванических элементах и аккумуляторах, включают реакции окисления — восстановления. Получение простых веществ, например железа, хрома, марганца, никеля, кобальта, вольфрама, меди, серебра, цинка, серы, хлора, иода и т. д., и ценных химических продуктов, например аммиака, щелочей, сернистого газа, азотной, серной и других кислот, основано на окислительно-восстановительных реакциях. Производство строительных материалов, пластических масс, удобрений, медикаментов и т. д. было бы невозможно без использования окислительно-восстановительных процессов. На процессах окисления — восстановления в аналитической химии основаны методы объемного анализа пер-манганатометрия, иодометрия, броматометрия и др., играющие важную роль при контролировании производственных процессов и выполнении научных исследований. [c.51]

    Сжигание топлива в топках паровых котлов и двигателях внутреннего сгорания, электролитическое осаждение металлов, процессы, происходящие в гальванических элементах и аккумуляторах, включают реакции окисления - восстановления. Получение простых веществ (железа, хрома, марганца, никеля, кобальта, вольфрама, меди, серебра, цинка, серы, хлора, иода и т. д.) ценных химических продуктов, например аммиака, щелочей, сернистого газа, азотной, серной и других кислот, основано на окислительно-восстановительных реакциях. Производство строительных материалов, пластических масс, удобрений, медикаментов И т. д. было бы невозможно без использования окисли-тельно-восстановительных процессов. На процессах окисления — восстановления в аналитической химии основаны методы объемного анализа перманганатометрия, ио,дометркя, броматометрия и др., играющие важную роль при контролировании производственных процессов и выполнении научных исследований. [c.75]

    В дальнейшем круг вопросов, изучаемых термодинамикой, значительно расширился. В настоящее время термодинамика рассматривает большое количество физических и химических явлений, сопровождающихся энергетическими эффектами. На основе законов термодинамики изучаются, например, работа холодильных машин, процессы в компрессорах, в двигателях внутреннего сгорания, в реактивных двигателях, процессы при электролизе, работе гальванических элементов, при проведении различных химических реакций. Исследования методами термодинамики по.чволяют не только подводить энергетические балансы, но также определять, в каком направлении и до какого предела могут протекать процессы при заданных условиях. Термодинамика, таким образом, дает" возможность сознательно управлять различными физико-химическими процессами производств. [c.71]

    В последнее время проявляется повышенный интерес исследователей к углеродным наповолокнам и материалам (УМ), полученным на их основе. Эти материалы обладают развитой адсорбционной поверхностью и могут быть использованы как носители катализаторов, аккумуляторы водорода для двигателей внутреннего сгорания, высокоэффективные сорбенты. В работе представлены результаты исследований по УМ из волокнистого углерода (ВУ), образующегося при диспропорционировании СО на поверхности железосодержащих контактов. В процессе вьшолнения проекта  [c.108]

    Применительно к котлам и другим топлив оиспользующим установкам азот также длительное время рассматривался как инертный газ, и только с конца пятидесятых годов в связи с развитием омо-говых явлений начаты исследования, приведшие к обнаружению окислов а3 0та в продуктах огораняя топлива на тепловых электростанциях, в двигателях внутреннего сгорания и различных плавильных и нагревательных аппаратах. [c.39]

    Работоспособность двигателя внутреннего сгорания во многом определяется тепловым состоянием деталей камеры сгорания (поршня, втулки, крышки). В связи с этим большую значимость приобретает определение интенсивности теплообмена в зарубашечном контуре. Сразу же отметим, что несмотря на значительное количество работ, посвященных исследованию теплообмена в контуре охлаждения, полной ясности в этом вопросе нет [12, 38, 53, 68]. Это относится как к теплообмену без фазовых переходов, так и к теплообмену с фазовыми переходами (кипению жидкости). Последнее не позволяет находить общих решений и ограничивает область применения полученных зависимостей. [c.197]

    Применение. Сплав Б. с А1 (сплав альба, 56% Ва)-основа геттеров (газопоглотителей). Для получения собственно геттера Б. испаряют из сплава высокочастотным нагревом в вакуумированной колбе прибора, в результате на холодных частях колбы образуется т. наз. бариевое зеркало (или диффузное покрытие при испарении в среде азота> Активной частью подавляющего большинства термоэмиссионных катодов является ВаО. Б. используют также как раскислитель Си и РЬ, в кач-ве присадки к антифрикц. сплавам, черным и цветным металлам, а также к сплавам, из к-рых изготавливают типографские шрифты для увеличения их твердости. Сплавы К с N1 служат для изготовления электродов запальных свечей в двигателях внутр. сгорания и в радиолампах. Ва (Г 2 12,8 дней)-изотопный индикатор, используемый при исследовании соединений Б. [c.242]

    Исследование качества сырья и продуктов процесса проводились с использованием стандартных аналитических методов. Углеводородный состав сырья и полученных продуктов определялся хроматографически. Антидетонационные характеристики компонентов и товарных бензинов определяли на одноцилиндровом двигателе внутреннего сгорания по ГОСТ 8226-82. [c.6]


Библиография для Двигатель, исследование сгорания: [c.229]   
Смотреть страницы где упоминается термин Двигатель, исследование сгорания: [c.426]    [c.513]    [c.7]    [c.136]    [c.364]   
Смотреть главы в:

Химические основы работы двигателя Сборник 1 -> Двигатель, исследование сгорания


Химические основы работы двигателя Сборник 1 (1948) -- [ c.152 ]




ПОИСК







© 2025 chem21.info Реклама на сайте