Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сурьма хроматом

    Определению мышьяка этим способом не мешает германий и небольшие количества сурьмы и олова. Мешают фосфаты, ванадаты, молибдаты и хроматы, а также галогениды, сульфиды, тио-сульфаты, сульфиты, цианиды, большие количества солей аммония. В связи с этим для определения мышьяка этим методом его предварительно отделяют от указанных всш,еств любым подходящим методом. [c.52]


    Пероксид водорода. В щелочной среде пероксид водорода используют для окисления хрома (III) до хромата, марганца (И) до диоксида марганца, мышьяка (III) до мышьяка(V), сурьмы(III) до сурьмы(V) и ванадия (IV) до ванадия(V). В то же время в кислых растворах этот реагент количественно превращает железо(II) в железо(III) и иодид-ион в молекулярный иод, но восстанавливает бихромат до хрома(III) и перманганат до марганца(II). Избыток пероксида водорода разлагается, если его кислый или щелочной раствор прокипятить несколько минут [c.317]

    На металлах, растворяющих водород, наблюдается наименьшее значение перенапряжения водорода Из данных, приведенных в табл. И, видно, что при выделении ислорода на платиновых металлах перенапряжение имеет наиболее высокие значения и наиболее низкие на металлах железной группы. Выделение кислорюда возможно тюлько на пассивных электродах, не растворяющихся в данных условиях при анодной поляризации (платиновые металлы и золото в кислотах, растворах солей и щелочей). В щелочах и карбонатах стоек никель и менее устойчиво железо. В растворах сульфатов и серной кислоты, а также в хроматах устойчив свинец и его сплавы, содержащие до 12 /о сурьмы. Графитовые аноды стойки в конденсированных хлоридах. Весьма стойки аноды из плавленой магнитной закись-окиси железа— магнетита. [c.38]

    Хроматы щелочных металлов Аллилхлорид Триоксид сурьмы Бензальхлорид (фенилди-хлорметан) [c.17]

    Менее удовлетворительно проходит отделение висмута в виде основного нитрата висмута. При этом отделении азотнокислый раствор выпаривают до сиропообразной консистенции, обрабатывают водой и выпаривают досуха. Обработку водой и выпаривание повторяют, пока прибавление воды уже не будет вызывать помутнения раствора. Наконец, растворимые соли извлекают холодным 0,25 %-ным раствором нитрата аммония, а нерастворимый остаток прокаливают до окиси свинца или подвергают дальнейшей обработке. Хлориды и сульфаты, образующие также основные соли висмута, должны, очевидно, отсутствовать. Также должны отсутствовать арсенаты и хроматы, образующие с висмутом нерастворимые осадки и элементы, соли которых способны гидролизоваться, как, например, олово и сурьма. [c.270]

    Производство дифенила описано S ott oM Пары бензола пропускают через металлический змеевик, погруженный в свинцовую баню, нагретую до 600—650°. По выходе из змеевика пары пробулькивают через расплавленный свинец и попадают в другой такой же змеевик, пофуженный во вторую с-вин-цовую баню, температура которой 750—800°. Полученный таким образом дифенил пропускают с большой скоростью через водяной холодильник. Согласно другому методу пары бензола пропускают через реакционную камеру, нагретую при 800° и содержащую контактные вещества, уменьшающие отложение угля Такими веществами являются сернистые кобальт, железо, медь, молибден,, мышьяк, олово или цинк хлористые никель или сурьма хромово-калиевые квасцы или же металлы селен, мышьяк, кремний, сурьма или молибден. Кроме того для такой дегидрогенизации были предложены следующие катализаторы трудноплавкие окислы, ванадаты, хроматы, вольфраматы, молибдаты, алюминаты, цин-каты таких металлов, как кальций, магний, титан, церий, цирконий, торий и бериллий [c.210]


    Коэффициент вариации при определении хрома 0,05 мкг мЛ равен 7%. Этим методом хром можно определять на фоне солей щелочных металлов в присутствии больших количеств ряда элементов. Прямо пропорциональная зависимость между максимумом производной анодного тока по времени и концентраций ионов в растворах наблюдается, например, в присутствии больших количеств сульфата цинка, вольфрамата (молибдата) аммония. Не мешают определению соизмеримые количества меди, сурьмы, висмута, щелочноземельные элементы в количествах, не осаждающих ионов СгО ". Ионы металлов, гидролизующиеся в используемых буферных растворах, не мешают, если осадок не захватывает хромат-ионы, например АР+ может присутствовать в больших количествах. [c.94]

    Иодометрически можно определять как восстановители, так и окислители. Из восстановителей иодометрически чаще всего определяют сульфиды, сульфиты, арсениты, нитриты, ртуть (I), сурьму (И1), цианиды, роданиды, олово (И), из окислителей — перекись водорода и другие перекиси, медь (И), железо (П1), двуокись марганца, гек-сацианоферрнат-ион 1Ре(СЫ)б , галогены (свободные), хлораты, броматы, иодаты, хроматы, перманганаты, арсенаты, гипохлориты. Все они выделяют из раствора иодида калия свободной иод, который можно оттитровать тиосульфатом натрия. [c.405]

    Добавка к хромато-фосфатному ингибитору солей кобальта, церия, хрома, марганца, кадмия, цинка и никеля оказывает положительное влияние на поведение стали. Соли же урана, кремния, таллия, циркония, железа, меди, сурьмы, бериллия и алюминия, наоборот, снижают эффективность ингибиторов. С экономической точки зрения наиболее приемлема добавка цинка. Оптимальные составы получаются при введении цинка в количестве от 1 до 2 мг/кг на 25 мг/кг полифосфата. [c.150]

    Мешают железо (III), сурьма (III), висмут, церий (III), золото (III), ртуть (II), серебро, свинец, метаванадат-ионы и вещества, реагирующие в кислой среде с нитритами, выделяя азот мочевина, тиомочевина, сульфаминовая кислота восстановители иодид-, сульфид-, тиосульфат- и сульфит-ионы, а также сильные окислители за исключением хромат-ионов, содержание которых да 80 мг/л допустимо, Ионы железа (III) можно связать в комплекс добавлением цитрата .  [c.689]

    Осаждение хромата таллия (1). В виде хромата таллий (I) осаждают в аммиачном растворе, отделяя его от цинка, никеля, кобальта и селена (IV). В цианидной среде таллий отделяется этим способом от кадмия, меди, ртути (II) и серебра в среде, содержащей аммиак и перекись водорода, — от мышьяка (III) и сурьмы (III). [c.1022]

    Минеральнае наполнители, применяемые в большом числе, придают продукту некоторую твердость и снижают з длинение. Наиболее важными являются окись цинка, окись магния, углекислый кальций, сульфат и карбонат бария, окись, карбонат и хромат свинца, сернистая сурьма, окиси железа и хрома, различные силикаты (каолин, глина, тальк, асбе т) и т.д. [c.944]

    В этих же условиях флуоресцируют ртуть (в 100 раз слабее рения), сурьма и уран по яркости свечения 5—10 мг последних двух элементов соответствуют I —1,5 мкг рения. Снижают яркость флуоресценции рения хроматы и перманганаты при их содержании большем, чем 100 мкг-, вольфраматы — большем, [c.227]

    Абсорбционная проба. Обнаружение стронция более затруднительно, чем бария. Почти все соединения стронция прозрачны для ультрафиолетовых лучей. Из труднорастворимых в воде соединений только хромат стронция поглощает ультрафиолетовые лучи в длинноволновой и средней области. Однако таким же поглощением обладают хроматы бария, алюминия, хрома, железа, цинка, олова, меди, кадмия, свинца, висмута и сурьмы, поэтому необходимо их отсутствие в растеоре. Каплю исследуемого раствора объемом 0,03 мл подсушивают на предметном кварцевом стекле и добавляют каплю 10%-ного раствора хромата калия. Выпадают пучки игл хромата стронция, окрашенные при рассматривании под ультрафиолетовым микроскопом в красный цвет. Предел обнаружения 0,6 мкг иона 5г +. Предельное разбавление 1 50 000. [c.117]

    В условиях определения германия с бензоином возникает флуоресценция в присутствии бора, бериллия и сурьмы. Другие катионы и анионы не приводят к возникновению флуоресценции с бензоином. Нитраты, хроматы, арсенаты гасят флуоресценцию, си- [c.326]

    При изучении извлечения теллура из солянокислого раствора в присутствии родамина С было показано , что наибольшая полнота извлечения достигается из 5—7% -ной соляной кислоты смесью бензола с эфиром в соотношении 2 1. Чувствительность реакции равна 0,5 мкг в 1 мл экстракта. В условиях, выбранных для определения теллура, галлий флуоресцирует сильнее теллура сурьма (III) и олово (II)—почти так же, как и теллур молибден, олово (IV) и рений—примерно в 10 раз слабее, а индий, таллий, ртуть и серебро—еш,е слабее. Некоторое свечение при содержании в. 5—10 -иг обнаруживают также свинец, селен, торий и цинк. Гашение флуоресценции теллура вызывают железо и ионы-окисли-тели—церий (IV), золото, ванадат и хромат. [c.364]


    В этих же условиях флуоресценция возникает только в присутствии ртути, но ее интенсивность в 100 раз слабее, чем в присутствии рения. Золото также переходит в экстракт, но флуоресценция при этом отсутствует. Ослабляют флуоресценцию рение-вого комплекса только золото, хроматы, перманганаты и вольфраматы. Первые три элемента допустимы в количествах до 100 мкг, вольфрам—150—200 мкг. Сурьма и уран в количествах 5—10 мг увеличивают флуоресценцию, отвечающую 5 мкг рения на 30—40% Молибден при содержании до 25—30 мг определению не мешает. Присутствие в растворе галогенидов приводит к образованию комплексов некоторых элементов (например, галлия, железа, индия, таллия), способных реагировать с родамином 6Ж, поэтому при определении рения галогениды должны отсутствовать. [c.376]

    Окисление дихроматом может быть использовано при определении и других элементов. Как уже от.мечено выше, хлориды и бромиды окисляются до свободных элементов, которые можно выделить из раствора нагреванием. Иод остается в растворе в виде иодата [5.1428, 5.1451]. Это используется при определении его в биологических. материалах 15.1452], хотя имеются сообш,ения о том, что окисление иода протекает неполно [5.1453]. Серу, фосфор, мышьяк, сурьму и металлы можно окислить хроматом до высших степеней окисления и определить их в растворе [5.1426]. Можно идентифицировать азотсодержащие функциональные группы по продуктам их окисления хроматом [5.1454]. Условия окисления с использованием хромовой кислоты или хроматов приведены в табл. 5.34. [c.233]

    Отделение от сурьмы и олова. При анализе сплава таллия с этими металлами его растворяют в азотной кислоте, таллий переходит в раствор в виде TINO3, а олово п сурьма образуют малорастворимые метакислоты [615, 900], Отделение от мышьяка. Отделение можно осуществить отгонкой мышьяка в виде АзСЦ [453] или осаждением 1аллия в виде хромата или тионалидата. [c.68]

    Для капельного открытия висмута Дубский, А. Окач п Тртилек [484] помещают на фильтровальную бумагу кристаллик тиомочевины и наносят каплю бесцветного слабокислого испытуемого раствора. В присутствии висмута появляется желтое пятно. Все ионы, перечисленные выше, открытию висмута не мешают. Серебро и одновалентную ртуть предварительно удаляют осаждением НС1. Трехвалентное железо восстанавливают прибавлением сульфита натрия и соляной кислоты. Хроматы восстанавливают спиртом. Сурьма дает с тиомочевиной менее интенсивное желтое окрашивание, однако при проведении контрольного опыта с раствором сурьмы удается открыть 10 у В1 при предельном отношении В1 8Ь=1 66. В отсутствие сурьмы открываемый минимум равен 1уВ1, предельное разбавление 1 30 ООО. [c.120]

    Определение кобальта в виде комплекса с пиридин-2,6-дикарбоновой кислотой С5Нз (СООН)2 [813]. Ионы двухвалентного кобальта легко окисляются броматом калия в азотнокислой или сернокислой среде в присутствии пиридиндикарбоновой кислоты, образуя окрашенный в красный цвет анионный комплекс трехвалентного кобальта, в котором на один ион кобальта приходится две молекулы реагента. Комплекс имеет максимум поглощения при 514 ммк и молярный коэффициент погашения при этой длине волны, равный 672. Можно определять 2—100 мг мл Со. Комплекс устойчив по отношению к ионам двухвалентного олова и тиогликолевой кислоте это позволяет определять кобальт в присутствии трехвалентного марганца, который также образует окрашенный комплекс, но легко восстанавливается при действии указанных восстановителей. Не мешают катионы меди, железа и никеля, а также щелочноземельных металлов, алюминия, кадмия, ртути, галлия, индия, свинца, сурьмы, мышьяка, висмута, титана, циркония, цинка, ванадия, церия, тория, хрома, серебра, анионы перманганата, молибдата, вольфрамата, хромата. [c.145]

    Эти методы имеют ограниченное применение, так как многие ионы препятствуют определению. Помимо перечисленных, весовому опредёле-т нию мешают железо, висмут, сурьма (III), мышьяк (III), фториды, бромиды, иодиды, оксалаты, ацетаты, цитраты, родапиды, фосфаты, молибдаты, хроматы, вольфраматы и большие количества нитратов. На результаты объемного определения влияют все ионы, которые окисляют подид или восстанавливают иод. [c.156]

    СОЛИ теллура она выделяется в осадок, который легко может быть принят за оксихлорид сурьмы. Теллуриты и селениты не окисляютЧ я азотной кислотой, но их можно окислить хлором, хроматом, перманганатом или окислительным сплавлением. Соединения селена (IV) и теллура (IV) окисляются также, если их слабокислый или аммиачный раствор обработать 1—2 г кристаллического персульфата калия при кипячении в течение 5—10 мин, затем добавить еще 1 г соли и продолжать кипятить 5 мип [c.383]

    Мешающее влияние хлорид-ионов и ионов Fe li устраняют, добавляя соль сурьмы. Мешают барий, свинец, стронций, образующие осадки, а также иодид-, иодат-, селенит- и селенат-ионы, однако они редко присутствуют в достаточных для этого количествах. Хромат-ноны в концентрациях, превышающих 20 мг/л, мешают образуя с реактивом окрашенное соединение. [c.186]

    Наводороживание зависит от температуры, времени поляризации, состава электролита. При электролизе кислых растворов титан и железо поглощают больше водорода, чем при электролизе щелочных растворов. Присутствие в электролите сила-нов, сульфоксидов, гидроксиаминокислот, хроматов снижает поглощение водорода металлами. Сероводород, фосфин, соединения мышьяка, селена, теллура, сурьмы являются промоторами наводороживания, так как затрудняют рекомбинацию атомов водорода и удаление его с поверхности. [c.10]

    Единой терминологии при описании этих соединений нет. Наиболее употребимая терминология относит их к кислым солям многовалентных металлов и делит эти соединения по типам кислотообразующего окисла, например, фосфаты, арсенаты, антимонаты, ванадаты, хроматы и т. д. В зависимости от того, как авторы представляют себе химизм образования, структуру и состав соединения, встречаются названия фосфат циркония и цирконилфосфат, фосфат сурьмы и фосфорносурьмяный катионит и т. д. [c.176]

    Соли бария, серебра, ртути-1, свинца, висмута и сурьмы при взаимодействии с бихрома трм калия дают нерастворимые в воде осадки хроматов. Из этих осадков при рассматривании под ультрафиолетовым микроскопом окрашены в красный цвет только осадки висмута и бария. К капле исследуемого раствора объемом 0,05 мл на часовом стекле добавляют 1—2 капли 5%-ного раствора аммиака (необходимо избегать избытка, так как высокая концентрация гидроксильных ионов мешает проведе-нию реакции). При эт ом элементы, образующие осадки с бихроматом калия (серебро, ртуть-1, свинец, висмут и сурьма), выпадают в виде гидроксидов. Барий остается в растворе. После удаления раствора с осадка каплю раствора помещают на предметное кварцевое стекло и смешивают с каплей 2 н. раствора уксусной кислоты рядом помещают каплю бихромата калия. При соединении капель выпадае-я осадок хромата бария, красный при рассматривании под ультрафиолетовым микроскопом. Чтобы сделать реакцию более отчетливой (бихромат калия сам интенсивно окрашен в поле зрения микроскопа в красный цвет, и красная окраска осадка сливается с окраской бихромата), следует после взаимодействия раствора с бихроматом калия снять кусочком фильтровальной бумаги жидкость с осадка хромата бария и промыть его 1—2 каплями дистиллированной воды, а затем уже рассматривать под микроскопом. Предел обнаружения 0,15 мкг иона Ба2+. Предельное разбавление 1 33 ООО. Предельные соотношения других катионов (при 0,30 мкг иона Ва +) следующие В1 + HgГ  [c.120]

    Кроме рения, в этих же условиях раствор флуоресцирует и в присутствии ртути, но его свечение в 100 раз слабее, чем в присутствии рения. Золото также переходит в экстракт, но флуоресценция при этом отсутствует. Ослабляют флуоресценцию рениевого комплекса золото, хроматы, перманганаты и вольфраматы. Содержание золота, хроматов и перманганатов допустимо в количестве до 100 мкг, вольфраматов— до 150—200 мкг. Сурьма и уран в количествах 5—10 мг повышают флуоресценцию 5 мкг рения на 30—40%. Молибден при содержании 25—30 мг не мешает определению рения. Присутствие в растворе галогенидов приводит к образованию тройных комплексов с родамином 6Ж галлия, индия, таллия, способных извлекаться бензолом и флуоресцировать. Поэтому в анализируемом растворе при определении рения должны отсутствовать галогениды. [c.61]

    Родамин 6Ж образует с ионами перрената в среде 0,5—1,5 н. Н2504 соединение, экстрагируемое бензолом. Экстракт флуоресцирует оранжевым светом Ч Спектр флуоресценции представляет собой бесструктурную полосу с максимумом при 550—560 ммк. При экстракции соединения рения из водного раствора объемом 10—25 мл бензолом (6 мл) можно определять 1—30 мкг Ке. Определению рения мешают сравнительно большие количества ионов Hgи, которые также образуют экстрагируемое и флуоресцирующее соединение. Интенсивность флуоресценции рениевого соединения уменьшается в присутствии ионов золота (П1), хромата, перманганата, вольфрамата. Ионы сурьмы и урана в количестве 5—10 мг увеличивают флуоресценцию 5 мкг Ке на 30—40% Не мешают ионы Мо (25—30 мг). В присутствии ионов галогенидов галлий, индий и таллий образуют с роданидом 6Ж комплексы, экстрагируемые бензолом и способные к флуоресценции. Поэтому при определении рения в анализируемом растворе должны отсутствовать ионы галогенидов. [c.248]

    В состав шихты некоторых эмалей входят токсичные вещества (соединения свинца, мышьяка, сурьмы, меди, бария, цинка, кадмия, молибдена, хроматы, фториды, кремнефториды, манга-наты, борная кислота и др.), попадание которых в организм даже в незначительных количествах (доли грамма) приводит к тяжелым отравлениям и заболеваниям. Использование этих веществ должно быть строго регламентировано. Многие вещества (едкие и углекислые щелочи, соединения хрома, марганца, окислители, окислы кобальта, никеля, меди) оказывают раздражающее действие на кожу и вызывают заболевания глаз. Даже в нетоксичных соединениях в качестве примесей могут содержаться ядовитые вещества. Поэтому в составных отделениях эмалеприготовительных цехов необходимо строго соблюдать правила гигиены. [c.453]


Смотреть страницы где упоминается термин Сурьма хроматом: [c.330]    [c.271]    [c.286]    [c.147]    [c.314]    [c.63]    [c.539]    [c.153]    [c.944]    [c.847]    [c.153]    [c.132]    [c.310]    [c.115]    [c.342]    [c.159]    [c.95]   
Методы разложения в аналитической химии (1984) -- [ c.233 ]




ПОИСК





Смотрите так же термины и статьи:

Хромато

Хроматы



© 2025 chem21.info Реклама на сайте