Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхностное коллоидных растворо

    Высокомолекулярные соединения способны образовывать не только истинные растворы, но и типичные лиофобные золи, если в качестве дисперсионной среды взята жидкость, по отношению к которой высокомолекулярное вещество является лиофобным. Такие коллоидные растворы отличаются ясно выраженной лиофобностью, что выражается в слабом взаимодействии вещества дисперсной фазы с дисперсной средой, требуют обязательного наличия стабилизатора для создания агрегативной устойчивости, обладают слабой диффузией и очень малым осмотическим давлением. Так же как и лиофобные золи, коллоидные растворы ВМС обладают термодинамической неустойчивостью, вызванной значительным избытком поверхностной свободной энергии. [c.329]


    Объяснение этого явления может заключаться в том, что при малых скоростях фильтрации становится существенным силовое взаимодействие между твердым скелетом породы и фильтрующимся флюидом, которое может дать преобладающий вклад в фильтрационное сопротивление. При весьма малых скоростях потока сила вязкого трения пренебрежимо мала, тогда как сила межфазного взаимодействия остается при этом конечной величиной, поскольку она не зависит от скорости и определяется только свойствами контактирующих фаз. В результате такого взаимодействия нефть, содержащая поверхностно-активные компоненты, в присутствии пористого тела с развитой поверхностью образует устойчивые коллоидные растворы ( студнеобразные пленки, частично или полностью перекрывающие поры). Чтобы началось движение, нужно разрушить эту структуру, приложив некоторый перепад давления. 24 [c.24]

    Коллоидные поверхностно-активные вещества характеризуются, подобно всем поверхностно-активным веществам, малой истинной растворимостью и способностью снижать поверхностное и межфазное натяжение в разбавленных растворах вследствие адсорбции и ориентации молекул на поверхности раздела. Однако наряду с этим при некоторой концентрации — критической концентрации мицеллообразования (ККМ)—в растворе начинают образовываться агрегаты молекул — мицеллы, вследствие чего общая растворимость ПАВ, обусловленная образованием наряду с истинным также и коллоидного раствора, резко увеличивается, тогда как молекулярная растворимость остается неизменной и равной ККМ. [c.400]

    Соотношение (V. 12) указывает на наличие однозначной взаимосвязи между объемными и поверхностными свойствами растворов коллоидных ПАВ. [c.138]

    Весьма интересной является зависимость характеристик разделения от концентрации поверхностно-активных веществ (рис. У1-22, в). Здесь наиболее ярко можно проследить взаимосвязь между структурой раствора и характеристиками разделения. На кривых селективность — концентрация ПАВ имеется ярко выраженный минимум. Причем такие минимумы характерны только для крупнопористых мембран — ультрафильтров. Более плотные обратноосмотические мембраны обладают высокой селективностью даже по отношению к мономеру. На крупнопористых мембранах увеличение концентрации ПАВ от О до ККМ приводит к снижению селективности, так как структурирования раствора в этой области не наблюдается. Минимум на кривой селективности соответствует ККМ данного ПАВ. Выше ККМ раствор начинает переходить в мицеллярное состояние и селективность задержания ПАВ резко возрастает. Выход кривых селективности и проницаемости на максимальные постоянные значения свидетельствует о том, что структура раствора стабилизировалась. Таким образом, ход этих кривых связан с изменением в структуре самих коллоидных растворов. [c.322]


    При быстром смешении исходных растворов образуется коллоидный раствор алюмосиликата натрия, который через некоторое время превращается в гидрогель с определенной формой и размером частиц. Для получения шарикового катализатора струйки золя направляют в слой турбинного масла, где он разбивается на отдельные капельки под действием сил поверхностного натяжения они принимают форму шариков и затвердевают. При производстве микросферического катализатора золь распыляют в слой трансформаторного масла сжатым воздухом. [c.12]

    При действии магнитного поля Ега коллоидные растворы ферромагнитных материалов между частицами в дополнение к обычным поверхностным силам появляются магнитные дипольные силы. Во внешнем магнитном поле энергия взаимодействия магнитных диполей [c.123]

    Коагуляция загрязнений, находящихся в масле в коллоидном или мелкодисперсном состоянии, может быть вызвана определенными веществами — коагулянтами, а также может происходить под влиянием механических, тепловых и световых воздействий, электрического поля и т. п. В качестве коагулянтов используют неорганические и органические электролиты, поверхностноактивные вещества, не являющиеся электролитами, коллоидные растворы поверхностно-активных веществ и гидрофильные высокомолекулярные соединения. [c.118]

    Механизм действия. Действие диспергентов основано на их поверхностно-активных и растворяющих свойствах [9, 10]. Продукты глубокого окисления нестабильных и высокомолекулярных углеводородов и неуглеводородных соединений находятся в топливе в виде коллоидного раствора до тех пор, пока он не разрушается под действием условий окисления [6, 11, 12]. Присадки, добавляемые к топливу, удерживают эти продукты в коллоидном состоянии, препятствуют их коагуляции и осаждению и часто переводят в раствор уже выпавшие осадки. Механизм действия таких присадок, как правило, заключается в диспергировании нерастворимых продуктов или удержании их в растворенном состоянии. [c.139]

    Ознакомление с приведенным перечнем убеждает в том, что он является почти всеобъемлющим. Найдется, вероятно, очень немного маслорастворимых поверхностно-активных веществ, которые нельзя было бы отнести к какой-либо из перечисленных групп. Напрашивается вывод, что классификация синтетических детергентов, основанная иа химическом признаке, вряд ли может принести практическую помощь, так как любое соединение, способное образовать в растворителе коллоидный раствор, представляет собою потенциальный детергент, пригодный для химической чистки. Но для того чтобы быть приемлемым в качестве такового, моющее средство не должно обладать запахом, быть неустойчивым и оказывать вредное действие на ткани и красители. Вместе с тем оно должно легко удаляться при прополаскивании очищенных предметов одежды, а также не усложнять фильтрацию и перегонку растворителя. [c.159]

    При осаждении из коллоидных растворов и суспензий, содержащих частицы размером меньше 1 мкм, подвод частиц и их концентрирование у поверхности электрода происходит в основном за счет сил, действующих на поверхностный заряд частиц. [c.107]

    Свойства коллоидных растворов зависят не только от степени их дисперсности, но и от их природы. Как показали многочисленные исследования, ца границе раздела между дисперсионной средой и частицами дисперсной фазы возникает так называемый двойной электрический слой, который играет важную роль в агрегативной устойчивости лиофобных систем. Этот слой может возникать либо в результате адсорбции ионов определенного знака (потенциалопределяющие ионы) на поверхности коллоидных частиц, либо вследствие электролитической диссоциации молекул поверхностного слоя самих частиц. [c.173]

    В системах с очень развитой поверхностью раздела фаз большое значение имеют так называемые поверхностные явления, которые, как показали исследования, зависят от природы и величины поверхности. В свою очередь величина поверхности данного количества вещества находится в прямой зависимости от его степени раздробленности, т. е. степени дисперсности. Коллоидные растворы ОТНОСЯТСЯ к классу высокодисперсных систем и потому они обладают громадной суммарной поверхностью частиц дисперсной фазы. [c.197]

    Теоретическое пояснение. Коллоидные растворы агрегативно неустойчивы вследствие наличия избытка энергии Гиббса на поверхности раздела фаз. К уменьшению удельной поверхностной энергии приводит агрегация (укрупнение) частиц. [c.199]

    Как было выяснено ранее, чем выше дисперсность, тем больше поверхностное натяжение, тем больше склонность к самопроизвольному уменьшению дисперсности. Поэтому для получения устойчивых, т. е. длительно сохраняющихся, суспензий, эмульсий, коллоидных растворов необходимо ие только достигнуть заданной дисперсности, но и создать условия дл я ее стабилизации. Ввиду этого устойчивые дисперсные системы состоят не менее чем из трех компонентов дисперсионной среды, дисперсной фазы и третьего компонента — стабилизатора [c.294]

    При рассмотрении реальных капиллярных систем следует учитывать, что внутри каждого капилляра возникает двойной электрический слой. Распределение плотности заряда в поверхностном слое, а следовательно, и величина -потенциала однозначно определяется (при данной температуре) составом фаз, а именно химической природой твердой фазы, составом раствора и его концентрацией. Таким образом, величина -потенциала по физическому смыслу не должна зависеть от структурных параметров, т. е, от размеров капилляра, что подтверждается и экспериментально. Точно так же, в коллоидных растворах, например в суспензиях, величина -потенциала у частиц дисперсной фазы не должна зависеть от их размеров .  [c.178]


    КОЛЛОИДНЫЕ РАСТВОРЫ. ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ [c.73]

    Вопрос о формах и закономерностях связи между водой и глиной весьма труден и имеет разноречивые трактовки. Различные исследователи связывают его с гидратацией обменных катионов (С. Матсон, П. Фагелер, С. Кюн) или гидратацией самой новерхности (А. А. Роде, С. Хендрикс, У. Гофман), образованием поверхностных коллоидных растворов (П. А. Ребиндер, Н. Я. Денисов, Д. Бриггс) или истинных растворов (В. С. Шаров), развитием водородных связей и комплексообразованием (А. В. Киселев, В. И. Лыгин, О. М. Мдивнишвили и др.). [c.26]

    Таким образом, из рассмотренных работ следует, что пленки, возникающие на поверхностях растворов в результате химической реакции, нельзя представлять себе как сплошные моно-или полимолекулярпые слои, как это иногда принималось ранее. Структурным элементом этих пленок является коллоидная частица, и сами пленки следует рассматривать как поверхностные коллоидные растворы, из которых при коагуляции образуются поверхностные сетки, моно-или полимицелляр-ные по толщине в зависимости от концентрации коллоидного раствора. [c.217]

    В системах, где поверхности раздела между жидкими, твердыми и газообразными фазами сильно развиты (коллоидные растворы, эмульсии, туманы, дымы), свойства поверхностных слоев приобретают основное значение и определяют многие своеобразные свойства всей системы в целом. Такие микрогетерогенные системы изучаются коллоидной химией, которая является крупным самостоятельным разделом физическо хглти и самостоятельной учебной ДИСЦИПЛ1Ш0Й в химических высших учебных заведениях. В настоящем курсе коллоидная химия не рассматривается. [c.19]

    Поверхность раздела ограничивает каждую клетку в живых организмах и мицеллу в коллоидных растворах. Ультрамикро-скопические исследования показывают, что даже в гомогенных системах, таких, как, например, воздух, вода, содержится множество частиц, обладающих большой общей поверхностью раздела. Относительная величина поверхности раздела становится тем больше, чем меньший объем она ограничивает. Поэтому для таких систем поверхностная энергия может составить весьма значительную долю молекулярной кинетической энергии дисперсной фазы. [c.5]

    Механизм действия коллоидных растворов поверхностно-активных веществ также основан на понижении поверхностной энергии на границе раздела фаз, однако при использовании этих коагулянтов на поверхности поляризуются не отдельные ионы или молекулы, а коллоидные частицы. В качестве коллоидных растворов поверхностно-активных веществ применяют вещества растительного происхождения (крахмал и его производные, щелочные вытяжки из торфа и бурого угля, сульфитноспиртовая барда), а также синтетические соединения, главным образом производные эфиров целлюлозы (например, карбоксилметилцеллюлоза). [c.119]

    Веп1ества, находящиеся в коллоидном состоянии и способные адсорСироваться в поверхностном слое раствора на границе жидкость — газ, называются пенообразователями. К таким веществам относятся экстракты лакричного корня, сапонин, никель, керосиновый и другие контакты, альбумины и др. Широкое применение находят два вида устойчивых огнегасительных пен химич еская и воздушно-механическая. [c.443]

    Эмульсии относятся к микрогетерогенным системам, частицы которых видны в обычный оптический микроскоп, а коллоидные растворы принадлежат к ультрамикрогетерогенным системам, их частицы не видны в обычный микроскоп. Хотя по своей природе эти системы близки, но физико-химические их свойства различны и зависят в значительной степени от дисперсности. При образовании эмульсии образуется огромная поверхность дисперсной фазы. Так, количество глобул воды в одном литре 1%-ной высокодисперсной эмульсии исчисляется триллионами, а общая межфазная площадь поверхности — десятками квадратных метров. На такой огромной межфазной поверхности может адсорбироваться большое количество веществ, стабилизирующих эмульсию. В процессе образования эмульсии на хщспергирование жидкости затрачивается определенная работа и на поверхности раздела фаз концентрируется свободная поверхностная энергия — избыток энергии, содержащейся в поверхностном слое (на границе двух соприкасающихся фаз). Энергия, затраченная на образование единицы межфазной поверхности, называется межфазным поверхностным натяжением. Удельная поверхностная энергия измеряется работой изотермического и обратимого процесса образования единицы поверхности поверхностного слоя и обозначается а. [c.15]

    Интересно отметить, что выделенные из нефти вещества обладают свойством обратимо коллоидно растворяться в нефти и нефтепродуктах. При помощи ультрацентрифугирования исследовано также влияние различных деэмульгаторов на коллоидно-диспергированные вещества - эмульгаторы. В выделенных коллоидно-диспергированных веществах спектрофотометрически определено содержание металлопорфи-риновых комплексов, обладающих довольно высокой поверхностной активностью и являющихся одним из компонентов эмульгаторов. Для эмульгаторов нефтяных эмульсий определены изотермы межфазного натяжения на границе вода - нефть (ромашкинская). Эмульгаторы растворяли в бензоле и различное количество раствора вносили в нефть. Изотермы межфазного поверхностного натяжения были определены и для диспергированных веществ, выделенных из той же нефти на ультрацент-рифуге с разделительной способностью 80 ООО. [c.30]

    Фазовое состояние, в котором находятся асфальтены, будет определяться природой нефти, количеством смолисто-асфальтеновых веществ, температурой системы [220]. В высокоароматизированной углеводородной среде, при небольшой концентрации асфальтенов сравнительно невысокой молекулярной массы образуется истинный раствор. Увеличение молекулярной массы и концентрации, снижение температуры и ароматично сти дисперсионной среды приводят к появлению ассоциатов и образуется термодинамически неустойчивая лиофобная система. Образуют ли выделившиеся асфальтены дисперсную фазу и коллоидный раствор или, агрегируясь, образуют самостоятельную псевдофазу [219] будет зависеть от концентрации и растворяющей способности смол, вязкости среды [218]. Смолистые фракции, играя роль поверхностно-активных веществ, образуют в ассоциате сольватный слой, так как они ориентированы к асфальтеновому ассоциату полярными фрагментами, а углеводородными к дисперсионной среде. Они представляют собой барьер, препятствующий укрупнению частиц. Устойчивость таких систем будет определяться толщиной сольватной оболочки. Неустойчивые системы стремятся к разделению фазы. Результатом этого может быть расслоение продукта в процессе хранения и компаундирования, при нагреве в змеевиках и др. [c.94]

    Для растворов коллоидных ПАВ поверхностное натяжение растворов линейно уменьшается в области малых концентраций вплоть до ККМ (до а = стккм), оставаясь далее постоянным. Поэтому для них уравнение (V. 9) принимает вид [c.138]

    Физиологическое действие желчных кислот заключается главным образом в том, что они облегчают расщепление и переваривание жиров. Свободные кислоты с трудом растворяЕотся в воде, но их щелочные соли обладают хорошей водорастворимостью. Соли желчных кислот сильно снижают поверхностное натяжение воды и поэтому способны эмульгировать жиры, тем самым переводя их в форму, более благоприятную для воздействия энзимов. С другой стороны, некоторые желчные кислоты, например дезоксихолевая и холевая, способны давать с нерастворимыми в воде веществами (высшими жирными кислотами, высшими кетонами, углеводородами и т. д.) высокомолекулярные продукты присоединения, образующие коллоидные растворы в воде и легче поддающиеся в этой форме ферментативному расщеплению. Например, холеиновая кислота, найденная в желчи человека, является таким продуктом присоединения, построенным из 8 молекул дезоксихолевой и 1 молекулы пальмитиновой нли стеариновой кислот. [c.872]

    Сапонины представляют собой весьма распространенные в растениях соединения сложного строения, образующие в воде коллоидные растворы, снижающие поверхностное натяжение воды и, подобно мылам, образующие пену. Они отличаются сильным гемолитическим действием и поэтому при внутривенном введении представляют собой сильные яды. Способность сапонинов понижать поверхностное натяжение, вероятно, обусловила в прошлом применение сапонинсодержащих растений для ловли рыб уже незначительное количество сапонинов убивает рыб. Некоторые сапонины, особенно дигитонин, образуют с холестерином и другими Зр-оксистероидами очень трудно растворимые осадки. [c.889]

    В главе XX (авторы В. К. Марков и А. Е. Клыгин) изложены данные по поверхностному натяжению и парахору углеводородов. Поверхностное натяжение имеет большое практическое значение, особенно в тех случаях, когда отношение поверхности раздела к объему жидкости велико, как в эмульсиях углеводородов с водой, нри диспергировании углеводородов (например, при впрыске их в двигатель впутреннего сгорания), при испарении мелких капель углеводородов, в коллоидных растворах углеводородов и т. д. Парахор имеет большое значение при анализе смесей углеводородов и нрп онределении строения индивидуальных углеводородов. [c.5]

    Классификация ПАВ и их применение [7]. По механизму действия на поверхностные свойства растворов ПАВ следует разделить на четыре группы. К первой группе относятся вещества, поверхностно-активные на границе жидкость — газ и прежде всего на границе вода —воздух, но не образующие коллоидных частиц ни в объеме, ни в поверхностном слое. Такими ПАВ являются низкомолекулярные истинно растворимые в воде вещества, например низшие члены гомологических рядов спиртов, кислот и т. п. Понижая поверхностное натяжение воды до 50—30 эрг1см , они облегчают ее растекание по плохо смачиваемым гидрофобным поверхностям в тонкую пленку. Эти вещества также слабые пенообразователи, повышающие устойчивость свободных двусторонних жидких пленок в пене. Поэтому ПАВ первой группы нашли применение во флотационных процессах, в которых пена должна быть неустойчивой, легко разрушающейся. Наиболее широкое применение ПАВ этой группы получили (В качестве пе-ногасителей, резко снижающих устойчивость пены. Пеногасители приобрели значение во всех процессах, где возникновение устойчивых пен нарушает или затрудняет ход процесса, например в т1аровых котлах высокого давления, в промывочных растворах применяющихся в глубоком бурении скважин и др. [c.34]

    Однако получаемый осадок электролитического марганца содержал от 0,3 до 0,8% 5е. В даином случае 5еО восстанавливаясь, образует коллоидные растворы, которые являются поверхностно активными, вследствие чего снижается скорость разряда Н+. [c.506]

    Из этой таблицы следует, что коллоидно-дисперсные системы в отличие от истинных растворов сами по себе агрегативно неустойчивы. Размеры их дисперсных частиц могут изменяться как самопроизвольно, так и под влиянием внешних факторов. Одной из причин неустойчивости коллоидных растворов является их гетерогенность. Обладая громадной суммарной поверхностью, следовательно, большой свободной энергией, коллоидные системы согласно второму началу термодинамики стремятся к равновесному состояипю, характеризующемуся разделением системы ка две фазы, имеющие минимальные межфазовые ПОВерХНОСТИ И МИНИМЭЛЬ-ную свободную поверхностную энергию. [c.277]

    При получении коллоидных систем методом диспергирования работа, затрачиваемая на преодоление межмолекулярных сил при дроблении дисперсной фазы, запасается системой в виде свободной энергии на межфазной поверхности. Избыток свободной энергии делает систему термодинамически неустойчивой. Для придания сист.еме агрегативной устойчивости избыток свободной энергии должен быть уменьшен посредством адсорбции. Однако практически в результате адсорбции никогда не удается избавиться от свободной поверхностной энергии полностью, и поэтому устойчивость типичных коллоидных систем носит обычно временный характер. При дроблении вещества, понятно, увеличивается энтропия системы. Однако увеличение энтропии благодаря сравнительно большим размерам частиц не сказывается сколько-нибудь заметно на устойчивости коллоидного раствора. Только при очень малых межфазных поверхностных натяжениях увеличение энтропии может приводить к самопроизвольному диспергЦ. ойанию и образованию равновесных коллоидных систем. [c.239]

    В целом полученные результаты свидетельствуют о том, что вследствие ориентированной адсорбции молекул неионогенных поверхностно-активных веществ происходит модификация поверхности частиц сульфида мышьяка. Типично гидрофобный коллоидный раствор AS2S3 превращается в золь с лиофильными свойствами, агрегативная устойчивость которого обусловлена адсорбциои-ными гидратированными слоями неионогенного стабилизатора, образующимися вокруг частиц дисперсной фазы. Ориентированная адсорбция молекул неионогенных поверхностно-активных веществ на поверхности частиц была установлена экспериментально.  [c.298]

    Наконец, ККМ можно определять по изменению поверхностного нд яжения коллоидного раствора ПАВ при повышении его кон-центрации. С увелйченЁем содержания ПАВ поверхностное натяжение раствора всегда падает, достигая в точке, отвечающей ККМ, обычно предельного постоянного значения. [c.410]

    Однако стабилизация дисперсных систем значительно более эффективна при добавлении к ним поверхностно-активных веществ (ПАВ) и Бысокомолеку.ляр-ных соединений, адсорбирующихся на границе раздела фаз. Адсорбционные слои ПАВ и высокомолекулярных соединений, обладая упругостью и механической прочностью, предотвращают слипание дисперсных частиц. Образование таких молекулярно-адсорбционных твердообразных поверхностных слоев П. А. Ребиндер назвал стпруктурно-механически.и фактором стабилизации дисперсных систем. Этот механизм стабилизации играет основную роль при получении предельно устойчивых высококонцентрированных пен, эмульсий, коллоидных растворов и суспензий не только в неводных, но и в водных средах. Для структурномеханической стабилизации дисперсий н водной среде применяют мыла щелочных металлов, белки, крахмал, а в неводных средах — мыла щелочноземельных металлов, смолы, каучуки. Такие вещества называют защитными коллоидами. [c.311]

    Наличие электрического заряда у частиц дисперсной фазы приводит к их значительной гидратации (полярные молекулы воды определенным образом ориентируются относительно заряженных частиц и вступают с ними во взаимодействие). Гидратнгя оболочка заметно снижает поверхностную энергию дисперсной фазы и тем самым уменьшает стремление частиц к укрупнению. Гидратная оболочка приводит также к разобщению частиц в коллоидном растворе, что повышает агрегативную устойчивость, а иногда даже обеспечивает сохранение коллоидной степени дисперсности. [c.174]

    На первый взгляд кажется, что для дисперсных систем правило смесей должно хорошо оправдываться. Коллоидная частичка состоит из большего количества молекул или атомов, причем взаимодействие между ними не меняется при образовании дисперсной фазы, если не считать частичек, находящихся в поверхностном слое. Поэтому можно предположить, что вещество в дисперсном состоянии имеет ту же диэлектрическую постоянную, что и в недиспергированном, а дисперсионная среда — неизменную диэлектрическую постоянную, и в большинстве случаев концентрация дисперсной фазы невелика. И тем не менее правило смешения с применением уравнения Клаузиуса — Мо-сотти для дисперсных систем оправдывается почти всегда гораздо хуже, чем для истинных растворов. Это свидетельствует о том, что в коллоидных системах есть вторичные явления, влияющие на диэлектрическую постоянную, т. е. поверхностные явления. Вполне естественно предположить, что диэлектрические свойства коллоидного раствора, как и другие его свойства, зависят от взаимодействия поверхности дисперсной фазы с дисперсионной средой, а также от адсорбционных процессов в поверхности раздела. [c.106]


Смотреть страницы где упоминается термин Поверхностное коллоидных растворо: [c.336]    [c.111]    [c.290]    [c.72]    [c.61]    [c.172]    [c.299]    [c.165]    [c.437]    [c.57]   
Физическая биохимия (1949) -- [ c.235 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимосвязь поверхностных И объемных И. Ф. Ефремов свойств растворов поверхностно-активных веществ 9 Факторы агрегативной устойчивости коллоидных дисперсий

Коллоидно-химические свойства водных растворов поверхностно-активных веществ

Поверхностное натяжение растворов коллоидных ПАВ

Поверхностные явления. Коллоидные растворы

Растворы коллоидные



© 2024 chem21.info Реклама на сайте