Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки аминокислотный мембранах

    Аминокислотной последовательности интерферона предшествует типичная для секреторных белков сигнальная последовательность, селективно отщепляемая во время или сразу после прохождения мембраны. Первичная структура сигнального пептида следующая  [c.431]

    Рис, 3.9. Асимметрия биологических мембран. Вклад белков в такую асимметрию показан на примере гликофорина мембраны эритроцитов. Гидрофильная часть аминокислотной последовательности белка взаимодействует с водным окружением мембраны, а гидрофобная часть, по-видимому, в спиральной конформации пронизывает мембрану. На схеме аминокислатной последовательности гидрофобная часть молекул выделена черными кружками остатки, содержащие углеводные цепи, помечены символом СНО. (Воспроизводится.-с разрешения Annual Reviews In .) [12]. [c.81]


    НЫ — это белки с молекулярной массой около 40 000. Родопсин (бычий или овечий) имеет 348 аминокислотных остатков, сгруппированных в виде семи преимущественно гидрофобных сегментов, которые проходят от одной до другой стороны фоторецепторной мембраны. Связь между белковым скелетом и ретиналем формируется при конденсации альдегида с е-группой ли-зинового остатка вблизи конца белковой цепи (на 296 месте в цепи или эквивалентном) с образованием шиффова основания  [c.238]

    Гидрофобные а-спиральные участки интегральных белков обычно содержат от 17 до 26 аминокислотных остатков, что вполне достаточно, чтобы полипептидная цепь однократно пересекла М. б. В белках, к-рые пронизывают М. б. насквозь, такие гидрофобные тяжи соединяют между собой полярные области белковой молекулы, находящиеся на противоположных сторонах мембраны. У белков, расположенных только на одной стороне М. б. и погруженных в нее лишь частично, а-спирали служат своеобразным гидрофобным якорем , прочно удерживающим белок в мембране. В нек-рых случаях заякоривание белков в М.б. происходит при помощи ковалентно связанных с ними липидов. [c.29]

    Разница между пептидами первой группы и белками проблематична и исторически базируется на размере молекул. Способность проходить через природные мембраны при диализе определяет верхний предел молекулярной массы пептидов как 10 000, или примерно 100 аминокислотных остатков. В настоящем обзоре низко-молекулярными мы будем называть пептиды, лежащие в области от дипептида до пептидов, содержащих примерно 50 аминокислотных остатков. Наибольший интерес в этой области за последнюю четверть века представляют в основном пептиды, обладающие гормональной активностью. В этой области достигнут заметный прогресс, что представляется весьма важным для взаимосвязи между биологией и химией. [c.285]

    Как уже упоминалось ранее (см. разд. 25.3.2), белки мембран можно подразделить на внешние, которые свободно закреплены на поверхности мембраны, и внутренние (или интегральные), расположенные внутри мембраны. Наиболее хорошо изученными мембранами являются миелин и мембраны эритроцитов, имеющие относительно простой состав белковых компонентов. Миелин, по-видимому, содержит только три типа полипептидных цепей [26], одна из которых является внешней и может быть удалена из мембраны экстракцией слабыми кислотами, две остальные являются внутренними и обладают необычным свойством — растворимостью в смеси хлороформа и метанола. Аминокислотная последовательность внешнего белка установлена, однако его вторичная и третичная структуры не определены. Большую часть обоих внутренних белков составляют гликопротеины входящие в их состав аминокислоты на 50 % являются неполярными, это затрудняет их определение, так как содержащие их пептидные фрагменты нерастворимы. [c.121]


    Мембраны эритроцитов содержат около восьми основных полипептидов [6]. Пять из них являются внешними и составляют 40 % общего содержания белка. Основным внутренним белком является гликофорин, один из немногих внутренних белков с установленной аминокислотной последовательностью (рис. 25.3.7) . В его молекуле несколько аминокислотных остатков связано с олигосахаридными фрагментами, которые в основном определяют антигенные и рецепторные свойства эритроцитов эти олигосахариды локализованы исключительно в Л -концевой части аминокислотной последовательности и находятся на внешней поверхности мембраны. Примечательна также высокая концентрация остатков дикарбоновых аминокислот в С-концевой последовательности. Однако наибольший интерес представляет участок между М- и <--концевыми последовательностями, содержащий около двадцати [c.121]

    Белки взаимодействуют с мембранным бислоем, в результате чего они либо ассоциируются с поверхностью мембраны — периферические белки, либо пересекают бислой один или несколько раз, прочно интегрируясь в него,— это интегральные белки. Интеграция оказывается возможной, если в первичной структуре белка имеются достаточно протяженные участки, содержащие гидрофобные аминокислотные последовательности. В таком случае белковые молекулы способны самопроизвольно встраиваться в бислой. При ассоциации рибосом с мембранными структурами встраивание гидрофобных белков в мембрану осуществляется синхронно с их синтезом при участии специальных механизмов, потребляющих энергию АТФ. [c.301]

    При изучении бактериородопсина были, по существу, впервые сформулированы принципы определения топо рафии мембранных белков. Анализ распределения гидрофобных и гидрофильных аминокислотных остатков в полипептидной иепи позволяет сделать вывод о ее пространственной укладке в мембране. Гидрофобные зоны, по всей видимости, представляют собой трансмембранные сегменты, в то время как гидрофильные районы выступают из мембраны и соединяют отдельные внутримембранные а-спиральные тяжи белковой молекулы. Такого рода анализ выявил в первичной структуре бактериородопсина семь участков повышенной гидрофоб ности. что хорошо согласуется с электронно-микроскопическими данными по топографии белка в мембране. [c.607]

    Достаточно сказать, что, хотя структура и функции белков растительных мембран в деталях в основном не изучены, вряд ли можно сомневаться в том, что их общий аминокислотный состав существенно разнится с аминокислотным составом других, гораздо лучше изученных белков. Аминокислоты в этих белках соединены ковалентно обычной пептидной связью в субъединицы, состоящие из нескольких сотен или тысяч аминокислотных остатков. Специфическая мембрана должна быть построена из множества таких белковых субъединиц, скрепленных между собой более слабыми силами, чем ковалентные связи. Природа и прочность этих связей зависят от типа аминокислот. Количественные характеристики этих сил притяжения, влияющих на сцепление белков и липидов, будут обсуждаться в следующем разделе. [c.47]

    Согласно общепринятому определению [1399, 1998], полипептидами называют соединения пептидной природы, содержащие от 3 до 80—90 аминокислотных остатков. Верхняя граница, приблизительно соответствующая молекулярному весу 10 000, отделяет полипептиды, способные проходить через целлофановые мембраны, от белков, которые задерживаются полупроницаемыми пленками. [c.25]

    Мы знаем, что в целом белки экстремальных галофилов являются сильно кислыми. Это было показано для суммарных цитоплазматических белков нескольких экстремально галофильных бактерий, для белков оболочки других экстремальных галофилов и для рибосомных белков Я. utirubrum (табл. 8.5), Был также определен аминокислотный состав белка газовых вакуолей и белка пурпурной мембраны Я. halobium. Ни один из этих белков ие обнаруживает заметной зависимости от присутствия солей. Фактически выделение пурпурной мембраны основано на том, что она устойчива в условиях низкой ионной силы, когда распадается большинство других клеточных структур. Создается впечатление, что все белки галофильных бактерий, за исключением двух указанных выше, имеют значительно более высокую кислотность (измеряемую по разнице между числом кислых и основных аминокислот), чем соответствующие белки негалофиль-ных бактерий. [c.389]

    По числу аминокислот, содержащихся в пептиде, различают ди-, три-, тетра-, пента-,. .., окта-, нона-, декапептиды и т. д. Чтобы избежать проблемы, связанной с греческой нумерацией длинноцепочечных пептидов, Бо-дански предложил количество аминокислотных остатков пептида обозначать арабской цифрой и помещать перед словом пептид . Например, 7-пептид вместо гептапептид, 10-пептид вместо декапептид. Пептиды, в молекулах которых меньше десяти аминокислотных остатков, формально относятся к олигопептидам, пептиды, построенные из большего числа аминокислотных остатков (до - 100),— к полипептидам. Различие между полипептидами и белками (макропептидами) чрезвычайно проблематично. Исторически сложилось так, что границей между полипептидами и белками считают соединения с молекулярной массой -10 ООО, т. е. состоящие примерно из 100 остатков аминокислот. Такой принцип классификации основан на способности к диализу через природные мембраны. [c.84]


    Отщепление сигнальной последовательности у люминальной стороны мембраны, обращенной в межмембранный просвет эндоплазматического ретикулума, по-видимому, приводит к тому, что гидрофобность растущего пептида уменьшается, и его пребывание в липидном бислое становится менее выгодным, чем переход в водную фазу межмембранного просвета. Соответственно, в зависимости от аминокислотного состава и последовательности, в водную фазу будут вытолкнуты либо лишь его водорастворимая часть (скажем, N-концевая часть), как в случае многих трансмембранных белков, либо весь белок по завершении его синтеза, как в случае секретируемых белков. Естественно, переход в водную фазу должен сопровождаться перестройкой пространственной структуры, приобретающей глобулярную конформацию (гидрофобные остатки обращаются внутрь глобулы или глобулярного домена, в то время как гидрофильные экспонируются наружу). [c.285]

    В мембранах липиды образуют биологические барьеры и оболочки, тогда как специфические функции мембран, такие, как, например, транспорт, передача сигнала и преобразование энергии, выполняются белками [19, 695—697]. Информация об аминокислотных последовательностях во внутримембранных частях белков крайне ограниченна известно, что в них имеются довольно протяженные участки неполярных остатков [698]. Наиболее подробная информация о третичной структуре получена для мембранного белка из Яй-loba terium lialobium [699, 700]. Субъединица этого белка состоит в основном из семи параллельных или антипараллельных а-спиралей, вытянутых от одной поверхности мембраны до другой. Другая хорошо исследованная система обсуждается ниже. [c.267]

    Все изученные к настоящему времени опсины, которые были выделены из сетчатки многих видов животных, представляют собой небольшие белки с мол. массой 30 ООО—40 000. Для опсинов, выделенных из палочек некоторых видов животных, был определен аминокислотный состав (но не последовательность аминокислот). Углеводная часть комплекса, состоящая из одного (или нескольких) остатка глюкозамина и маннозы, прочно связана с аспарагиновым остатком молекулы белка. С белком ассоциировано также значительное количество липидов, главным образом фосфатидилхолин и фосфатидилэтаноламин. Вопрос о том, связаны ли эти фосфолипиды со зрительным пигментом, составляя часть его молекулы, или они просто являются загрязнениями, попавшими из липидной области рецепторной мембраны, остается открытым. [c.306]

    Обычно транспорт белков через клеточную мембрану обеспечивают N-концевые аминокислотные последовательности, называемые сигнальными пептидами (сигнальными последовательностями, лидерными пептидами). Иногда удается сделать белок секретируемым, присоединив к кодирующему его гену нуклеотидную последовательность, ответственную за синтез сигнального пептида. Однако простое наличие сигнального пептида не обеспечивает эффективной секреции. Кроме того, Е. соН и другие грамотрицательные микроорганизмы обычно не могут секретировать белки в окружающую среду из-за наличия наружной мембраны. Есть по крайней мере два способа решения этой проблемы. Первый - использование грамположитель-ных про- или эукариот, лишенных наружной мембраны, второй - создание грамотрицательных бактерий, способных секретировать белки в среду, с помощью генной инженерии. [c.126]

    Колбочки, являющиеся рецепторами цветового зрения, устроены значительно сложнее, чем палочки, но механизм их действия в принципе такой же. Мы уже упоминали, что колбочки и палочки содержат одинаковый хромофор. Различия в спектрах поглощения (рис. 1.3) обусловлены строением опсинов, с которыми связан ретиналь. О структуре этих белков в колбочках известно еще меньше, чем об опсине палочек. Предполагается, что они закодированы в различных генах и могут, следовательно, иметь различные аминокислотные последовательности. Это подтверждается тем фактом, что цветовая слепота (дальтонизм) имеет рецессивный наследственный характер и связана с полом. Около 1% мужчин не различают красный цвет и 2% —зеленый, тогда как у женщин дальтонизм встречается значительно реже. Все три типа колбочек имеют и морфологические отличия от палочек. Помимо того что колбочки конические по форме, они отличаются от палочек и по структуре своих дисковых мембран, которые у них представляют собой не отдельные органеллы, а просто впячивания плазматической мембраны, т. е. плазматические и дисковые мембраны образуют континуум. Эти отличия колбочек учтены в модели фоторецепции Хагинса (рис. 1.7а, справа) связь между поглощением света и закрыванием натриевых каналов здесь опять-таки осуществляет кальций, который [c.19]

    Белок является полифункциональным соединением, в котором каждый аминокислотный остаток выполняет определенную роль в поддержании нативиой конформации или проявлении биологической функции. Если используются модифицирующие агенты достаточно широкой специфичности, конечный результат зависит от доступности тех или иных функциональных групп белка в данных условиях. В частности, ацилирование с помощью радиоактивно меченного уксусного ангидрида было предложено в качестве метода локализации остатков лизина, расположенных на поверхности белковой глобулы (Б. Хартли). Этот прием широко применяется и для исследования топографии мембранных белков, когда доступными действию так называемых непроникающих реагентов оказываются лишь группировки, расположенные вне мембраны. [c.160]

    Изменения активности некоторых белков коррелируются, как правило, с изменениями ряда физических свойств. Так, изменение формы белковой молекулы можно установить по изменению некоторых гидродинамических характеристик (например, коэффициента трения, инкремента вязкости), по изменению светорассеяния, поверхностных свойств, диффузии через полупроницаемые мембраны и скорости седиментации [90]. Изменения термодинамических свойств (энтальпии и энтропии), объема, растворимости, оптического вращения, поглощения в инфракрасной области, дифракции электронов, а также некоторые другие характеристики, приведенные Каузманом [90], используются для Оцейки изменений формы белковых молекул. Большинство этих измерений было проведено па макромолекулах неизвестной структуры, для которых не была установлена последовательность аминокислотных остатков. В настоящее время благодаря усовершенствованию методов деградации белков, аналитического определения Концевых групп, методов разделения и идентификации отдельных фрагментов можно успешно изучать белки с молекулярным весом порядка 20 ООО. Хотя эта работа еще не достигла молекулярного уровня, тем не менее она дает возможность лучше использовать значения физических констант белковой молекулы известной структуры для объяснения механизма взаимодействия фермента с субстратом. Структура такого белка, как фиброин (белковое вещество натурального шелка), в настоящее время хорошо изучена благодаря сравнению рентгенограммы и ИК-спектров нативного волокна с рентгенограммами [35, 38, 108, 140] и ИК-спектрами [168] небольших фрагментов белка известной структуры, полученных при деградации, а также синтетитегаихпмшнептидо [c.386]

    Изучение белков, содержащихся в плазматической мембране эритроцитов, позволило сформулировать новые представления о строении мембран. Возникло, в частности, предположение о том, что по крайней мере некоторые мембраны имеют скелет . В мембране эритроцита человека содержится пять главных белков и большое число минорных. Большинство мембранных белков-гликопротеины. К интегральным белкам в мембране эритроцита относится гликофорин ( переносчик сахара ). Его молекулярная масса составляет 30000 гли-кофорин содержит 130 аминокислотных остатков и множество остатков сахаров, на долю которых приходится около 60% всей молекулы. На одном из концов полипептидной цепи располагается гидрофильная голова сложного строения, включающая в себя до 15 олигосахарид-ньк цепей, каждая из которых состоит приблизительно из 10 остатков сахаров. На другом конце полипептидной цепи гликофорина находится большое число остатков глутаминовой и аспарагиновой кислот (рис. 12-20), которые при pH 7,0 несут отрицательный заряд. В середине молекулы, между двумя гидрофильными концами, располагается участок полипептидной цепи, содержащий около 30 гидрофобных аминокислотных остатков. Богатый сахарами конец молекулы гли-1Кофорина локализуется на внешней поверхности мембраны эритроцита, выступая из нее в виде кустика. Считают, что расположенный в середине молекулы гликофорина гидрофобный участок проходит сквозь липидный бислой, а полярный конец с отрицательно заряженными остатками аминокислот погружен в цитозоль. Богатая сахарами голова гликофорина содержит антигенные детерминанты, определяющие группу крови (А, В или О). Кроме того, на ней имеются участки, связывающие некоторые патогенные вирусы. [c.347]

    Кислый характер белков клеточной стенки и клеточных мембран у галофилов. Различия, характерные для аминокислотного состава рибосомных белков галофильных и обычных микроорганизмов, обнаружены и у других белков. Особенно демонстративно эти различия проявились при изучении белков клеточных стенок и мембран. Давно известно, что клеточная оболочка (состоящая из клеточной стенки и плазматической мембраны) у галофилов подвергается лизису, если содержание соли в среде уменьшить примерно до 5% (Na l). Вопреки естественному предположению этот лизис не обусловлен осмотическими эффектами. Высокие концентрации неионных растворенных веществ, например сахарозы, не предотвращают лизиса клеточной оболочки. Заинтересовавшись вопросом о причинах этого лизиса, Дж. Гиббонс и его сотрудники более 10 лет назад пришли к выводу, что клеточные стенки и мембраны сохраняют свою целостность благодаря слабым вторичным взаимодействиям и остаются интактнымп до тех пор, пока их отрицательные заряды блокированы высокими концентрациями Na+. Эта гипотеза по существу предсказывала, что в клеточной оболочке должны преобладать кислые белки. [c.128]

    Молекула ГАМК, поступая в синаптическую область, за счет кислотно-основных взаимодействий обычно присоединяется к соответствующим радикалам аминокислотных остатков белка нейронов мозга. В результате происходит ингибирование активности нейрона, обусловленное искажением локальной структуры белковой клеточной мембраны. Вследствие структурных изменений в мембране открываются образованные спиральными белками каналы, способные пропускать внутрь клетки анионы СР. В результате естественная разность потенциалов на мембране нервной клетки повышается, и нейрон теряет способность воспринимать и передавать потенциал действия (нервный импульс) при обычных концентрациях активирующих нейромедиаторов. [c.472]

    Межмолекулярные взаимодействия в тонких пленках и мембранах. Уже простой анализ действия факторов, приводящих к дезинтеграции тонких углеводородных пленок и биологических мембран, позволяет получить определенное представление об особенностях различных межмолекулярных взаимодействий (электростатические и ван-дер-ваальсовы), формирующих эти структуры (см. гл. VIII). В мембранных системах электростатические взаимодействия осуществляются между анионными липидами, амино- и SH-группами аминокислотных остатков белков (положительный заряд), а-карбоксильными группами сиаловой кислоты (отрицательный заряд) и т. д. Условно выделяют три типа электростатических взаимодействий в мембранных системах латеральное, или тангенциальное взаимодействие заряженных групп молекул, которые расположены в одном полуслов мембран трансмембранное взаимодействие заряженных групп, расположенных по разные стороны мембраны межмембранное взаимодействие заряженных групп, расположенных на поверхности двух соседних мембран.  [c.20]

    Трансмембранное электрическое поле способно, по-видимому, и изменять величину рК аминокислотных остатков, участвующих в транспорте Н+, и, возможно, самого шиффова основания. Однако в Бр дикого типа основание Шиффа имеет очень высокое сродство к протону (рК 13), и изменение рК во внешнем электрическом поле порядка 10 В/м не приводит к его депротонированию. Поэтому эффект появления максимума при 630 нм вызван в основном поляризационными перестройками белка, а также, возможно, протонированием остатка Асп 85 от протонов, находящихся в периплазматическом канале и не связанных с шиффовым основанием. Однако в некоторых мутантах, где Асп 85 заменен на нейтральный Асн, основание Шиффа имеет гораздо меньшую аффинность к протону (рК 8-9) вследствие нарушения баланса зарядов в акцепторном сегменте. В таких мутантах электрическое поле индуцирует в темноте переход в форму с депротонированным основанием Шиффа. Причем эффект имеет выраженный векторный характер и проявляется при отрицательном потенциале на периплазматической стороне мембраны мутантного штамма, т. е. в условиях, когда поле стимулирует перенос протона от основания Шиффа в акцепторный участок канала к Асп 212 (рис. XXIX.6). [c.407]


Смотреть страницы где упоминается термин Белки аминокислотный мембранах: [c.69]    [c.350]    [c.368]    [c.75]    [c.247]    [c.216]    [c.390]    [c.374]    [c.278]    [c.78]    [c.79]    [c.205]    [c.89]    [c.623]    [c.283]    [c.370]    [c.283]    [c.96]    [c.97]    [c.375]    [c.196]    [c.286]    [c.501]    [c.242]    [c.361]   
Химия и биология белков (1953) -- [ c.96 ]




ПОИСК





Смотрите так же термины и статьи:

Аминокислотные белках



© 2025 chem21.info Реклама на сайте