Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метилизобутилкетон как растворитель

    Для достижения благоприятных условий образования комплекса необходимо создать возможность взаимодействия карбамида с парафином в гомогенной среде. Но создание таких условий осложняется тем, что основные растворители, хорошо растворяющие парафин, такие, как углеводородные растворители, не растворяют карбамид, а растворители, хорошо растворяющие карбамид (вода, водные низшие спирты), не растворяют парафин. Поэтому для создания условий взаимодействия карбамида и парафина в гомогенной среде к ним приходится подбирать и добавлять растворители или сочетания растворителей, которые в некоторой, хотя бы и небольшой степени растворяли одновременно и парафин и карбамид. Растворителями, более или менее отвечающими данным требованиям, могут служить, например, изобутиловый, изопропиловый спирты, метилэтилкетон, метилизобутилкетон, а также дихлорметан [36] и некоторые другие. Но растворяющая способность этих растворителей, будучи относительно удовлетворительной для нефтяных продуктов и содержа- [c.142]


    Ацетон является исходным материалом для получения ряда продуктов, как, нанример, диацетонового спирта, являющегося превосходным растворителем для ацетата целлюлозы. Окись мезитила, метилизобутилкетон и др. являются растворителями для искусственных веществ и лаков. На рис. 128 показано, какими возможностями располагает нефтехимическая промышленность для получения важнейших растворителей, на рис. 129— то же в отношении мягчителей и пластификаторов. На рис. 130 приведена принципиальная схема получения растворителей и пластификаторов на основе нефти и природного нефтяного газа. [c.206]

    Гексиленгликоль добавляется преимущественно к топливу. Окись мезитила, образующаяся при отщеплении воды, способна вступать в различные реакции присоединения, например с метанолом в присутствии небольших количеств щелочи. При гидрированин окиси мезитила получают метилизобутилкетон — очень важный растворитель. Гидрирование в жестких условиях дает метилизобу-тилкарбинол. Метилизобутилкетон и метилизобутилкарбинол являются очень хорошими растворителями для поливинилхлорида, сополимеров винилхлорида, производных целлюлозы, хлорированного каучука и т. д. В большинстве случаев по растворяющей способности они превосходят сложные эфиры. [c.146]

Рис. 18. Метилизобутилкетон растворители — метанол (1, 3) и изооктан (2,4) концентрация, г/л Рис. 18. Метилизобутилкетон растворители — метанол (1, 3) и изооктан (2,4) концентрация, г/л
    Метилизобутилкетон. Растворитель предварительно взбалтывают с 0,5 н, соляной кислотой, [c.970]

    КОСТЬ возрастает при ухудшении растворителя, как это показано на примере растворов поливинилхлорида в смеси метилизобутилкетона (растворитель) и толуола (разбавитель) на рис. П1-21. [c.155]

    Подача растворителя (метилизобутилкетона), % объемн. 70 [c.215]

    В рассмотренном процессе в качестве растворителя можно применять не только дихлорэтан, но и другие растворители, например метилэтилкетон, метилизобутилкетон, спирт и т. д. В этом случае обезмасливаемый парафин не всплывает в верхнюю часть отстойников, а оседает на дно, которое в этих случаях должно быть коническим. [c.233]

    Ассоциация молекул в водной фазе вызывает уменьшение коэффициента распределения при увеличении концентрации металла, ассоциация же в органической фазе—увеличение этого коэффициента. Комплексы металла, имеющего хорошо ассоциирующие частицы, отличаются очень слабой растворимостью в воде, большой—в неполярных растворителях (бензол, четыреххлористый углерод, хлороформ и метилизобутилкетон) и слабой в полярных (спирты, эфиры). Металлы со слабо ассоциированными молекулами особенно хорошо экстрагируются кетонами, простыми и сложными эфирами и другими растворителями типа доноров при добавлении кислот. В таких системах коэффициент распределения увеличивается с повышением количества свободной кислоты, а в некоторых системах имеет максимум при известных ее концентрациях, так как при низких концентрациях из частиц кислоты и экстрагируемого вещества образуется мало комплексов, а при высоких концентрациях количество комплексов сильно увеличивается. Нов некоторых системах при определенной кислотности одновременно начинает расти взаимная растворимость фаз, что может ухудшить коэффициент распределения. [c.425]


    Состав кетонов тоже сильно влияет на растворимость. Наибольшая избирательность получается у смеси, содержащей 28,6% метилизобутилкетона и 71,4% диизобутилкетона. Пользуясь 4-ступенчатой экстракцией этими растворителями, можно получить оба металла чистотой более 99%. [c.453]

    За рубежом работает около 50 установок фракционирования парафинов для получения одновременно двух или более товарных продуктов с разными температурами плавления. Процесс включает кристаллизацию парафина в растворе МЭК — толуола, метилизобутилкетона или его смеси с МЭК, причем растворитель [68, с. 195] добавляют к сырью до начала кристаллизации. На первой ступени фильтрования отделяется высокоплавкий парафин, [c.159]

    Состав растворителя. Содержание кетона в кетон-ароматиче-ских растворителях (по объему) в смеси метилэтилкетон—толуол 40—60%, в смеси ацетон—толуол 25—40%. При использовании в качестве растворителя смеси метилизобутилкетон—метилэтилкетон кетоны берут в объемном соотношении 3 1. [c.229]

    Из данных табл. 17 следует, что наибольщей растворяющей способностью по отнощению к парафину обладают толуол и бензол растворяющая способность всех остальных растворителей значительно пиже. По способности растворять парафины все исследованные вещества можно расположить в следующем порядке [59—61] толуол > бензол > метилизобутилкетон > метилэтилкетон > ацетон. Растворимость парафинов в смесях кетона с бен-золом или толуолом с увеличением содержания кетона уменьшается.. Легкоплавкие парафины растворяются во всех растворителях лучше, чем высокоплавкие. [c.75]

    Растворителями при холодном фракционировании служат смесь МЭК и толуола, метилизобутилкетон или смесь его с МЭК. В случае применения смеси кетонов растворяющую способность растворителя можно регулировать, изменяя концентрацию растворенной в нем воды. Чем выше температура плавления получаемого парафина, тем выше должна быть температура фильтрации ее можно изменять от —15 до 25°С. [c.131]

    Метилизобутилкетон Растворитель для нитроцеллюлозы, виниловых полимеров, акриловых смол, лаков, политур экстракция пенициллина депарафннизация смазочных масел удаление старых лакокрасочных покрытий [c.439]

    В качестве растворителей испытаны метилизобутилкетон [337, 347, 383, 394, 395, 403], трикрезилфосфат, растворенный в керосине [337, 341, 363, 365, 377, 384, 391, 394], этиловый эфир [336, 337, 395, 396], пентаэфир, 2-бутоксиэтанол, дибутилкарбинол, децил-трифторацетон в бензоле и третичные спирты [337, 383]. Чаще всего применяются первые три растворителя, но в связи с высокой летучестью и низкой сопротивляемостью действию концентрированной азотной кислоты этиловый эфир оттесняется на задний план. [c.433]

    Из анализа вышеприведенных требований к качеству экстра — 1ентов можно констатировать, что практически невозможно реко — иендовать универсальный растворитель для всех видов сырья и для нсех экстракционных процессов. В этой связи приходится довольствоваться узким ассортиментом растворителей для отдельных экстракционных процессов. Так, в процессах деасфальтизации гудро — нов широко применялись и применяются низкомолекулярные ал — каны, такие, как этан, пропан, бутан, пентан и легкий бензин, являющиеся слабыми растворителями, плохо растворяющими смолисто—асфальтеновые соединения нефтяных остатков. В процессах селективной очистки масляных дистиллятов и деасфальтизатов применялись сернистый ангидрид, анилин, нитробензол, хлорекс, фенол, фурфурол, крезол и N — метилпирролидон. В процессах депарафинизации кристаллизацией наибольшее применение нашли ацетон, бензол, толуол, метилэтилкетон, метилизобутилкетон, дихлорэтан, метиленхлорид. [c.212]

    Для процессов депарафинизации масел и обезмасливания гачен и нетролатумов экстрактивной кристаллизацией предложены и испытаны сотни полярных и Е1егюлярных растворителей и их смеси. Однако только некоторые из иих нашли применение в промышленных условиях. Наибольшее распространение в современных производствах масел получили кетон—ароматические углеводороды смеси метилэтилкетона (МЭК) или ацетона с толуолом (см. табл. 6.1). За рубежом все более широкое распространение получает смесь МЭК с метилизобутилкетоном. [c.249]

Рис. 6-46. Схема извлечения циркония и гафния из водного раствора НС1 экстракцией метилизобутилкетоном (гексанон) сыр ц 2—органический растворитель J—водный рафинат-1-2г4-+ (Ht) органический эхстракт-)-4-Hi + (Zr) 5—Zr-fHi в сырец (три колонны) 5—Hf-t-иримеси ( d, В. Ti) 7—водный рафинат-)-2г. Рис. 6-46. <a href="/info/325339">Схема извлечения</a> циркония и гафния из <a href="/info/6274">водного раствора</a> НС1 <a href="/info/334452">экстракцией метилизобутилкетоном</a> (гексанон) сыр ц 2—<a href="/info/8337">органический растворитель</a> J—водный рафинат-1-2г4-+ (Ht) органический эхстракт-)-4-Hi + (Zr) 5—Zr-fHi в сырец (три колонны) 5—Hf-t-иримеси ( d, В. Ti) 7—водный рафинат-)-2г.
    Процесс депарафинизации "Дилчил" применяется для депарафинизации дистиллятных и остаточных рафинатов с использованием смеси МЭК с метилизобутилкетоном или толуолом. Процесс отличается от традиционных использованием весьма эффективных кристаллизаторов "Дилчил" оригинальной конструкции. В кристаллизаторах этого процесса используется прямое впрыскивание предварительно охлажденного в аммиачном холодильнике растворителя в поток нагретого в паровом подогревателе депарафинируемого сырья. В результате такой скоростной кристаллизации образуются 1)азрозненные компактные слоистые кристаллы сферической фор — мы. Внутренний слой этих кристаллов состоит из первичных зародышей из высокоплавких парафинов, а внешний слой образован из кристаллов низкоплавких углеводородов.. Суспензия из кристаллизатора "Дилчил" затем направляется после охлаждения до требуемой температуры в скребковых аммиачных кристаллизаторах в вакуумные фильтры. [c.268]


    Используемые растворители. В кетон-бензол-толуоловых процессах депарафинизации в качестве кетона используют обычно ацетон и метилэтилкетон (МЭК). В последнее время стали получать распространение метилизобутилкетон и другие высшие кетоны. Кетон-бензоловые смеси без добавки толуола применяют в качестве растворителя в процессах, проводимых с повышенными температурами, например, при обезмасливании гачей и петролатумов. При низкотемпературной депарафинизации можно применять кетон-толуоловые растворители, не содержащие бензола. Кетон-бензол-толуоловые растворители используют для депарафинизации при температурах порядка —20 Н--35°. Толуол [c.185]

    Ацетон используется в качестве исходного сырья для производства уксусного ангидрида, а также в качестве растворителя в производстве ацетилцеллюлозы и технических лаков. В большом количестве из него получают диацетоповый спирт, являющийся растворителем и промежуточным продуктом в производстве метилизобутилкетона и карбонола, окиси мезитила и др. [c.100]

    Исследования массообмена, проведенные Шервудом [911 с системами бензол или метилизобутилкетон—уксусная кислота—вода, доказалн, что для экстрагирования из капли или в каплю особенное значение имеют первый и последний периоды, Шервуд показал, что за первый и третий периоды проходит около 40% экстрагируемого вещества, остальное—за период свободного движения капли, причем удлинение пути капли вызывает все уменьшающийся прирост экстрагирования. Лихт и Конвей [671 подтвердили факт, что количества экстрагированного вещества за период образования капли и за период слияния приблизительно равны, но в сумме они меньше, чем показал Шервуд. При применении в качестве растворителей изопропилового эфира, этилацетата и метилизобутилкетона (а в качестве рафината—водного раствора уксусной кислоты) экстра- [c.84]

    При выборе органического растворителя можно руководствоваться некоторыми общими указаниями. Для экстракции неорганических солей из воды пригодны соединения с умеренной растворимостью в воде и небольшой молекулярной массой. Для некоторых солей и слабо растворяющихся в воде органических растворителей можно составить ряд в направлении уменьшающейся экстракционной способности хлороформ, о-дихлорбензол, бензол, толуол, че-тыреххлористый углерод, циклогексан, н-гексан. Для солей, образующих комплексы, и растворителей типа доноров (кетоны, эфиры) составить такой ряд для всех металлов невозможно. Известно, например, что для Ре , Аи и Оа существует следующая последовательность (начиная с высшей) метилизопропилкетон, метилизобутилкетон, фурфурол, этилацетат, этиловый эфир, изопентиловый спирт, изоамилацетат, р-хлорэтиловый эфир, изопропиловый эфир, углеводороды. Для других металлов будет совсем иная последовательность. Некоторые задачи были рассмотрены в 3 и 4. [c.425]

    С целью достижения большей чистоты экстракцию можно повторить несколько раз. В качестве растворителей опробованы этиленгликоль, пентаэфир (дибутилокситетраэтиленгликоль), диизо-пропилкарбинол, изопропиловый эфир, диэтиленгликоль, бутиловый эфир (дибутилкарбитол—сокращенно ДБК) [405], этиловый эфир [336, 343, 353, 358, 360, 363, 364, 367, 372, 381, 385, 389], метилизобутилкетон (гексон, сокращенно МИБК) [352, 381, 405], а также трибутилфосфат (ТБФ), растворенный в керосине [335, 337, 353, 354, 363, 374, 387, 402] или в другой органической жидкости, например в четыреххлористом углероде [317]. Степень вымывания нитрата уранила повышается соответственно подобранным содержанием кислоты, добавлением высаливающих и комплексообразующих веществ [369, 374, 378]. Применяются также смешанные растворители [340, 400]. [c.426]

    На ряде зарубежных заводов для получения низкозастывающих масел осуществляется по новой технологии процесс 011сЬ1П [68, с. 153 87]. В этом процессе использован оригинальный метод кристаллизации парафина, заключающийся в прямом введении холодного растворителя в нагретое сырье при энергичном перемешивании в кристаллизаторе, снабженном перемешивающим устройством. Образующиеся сильно разрозненные и компактные агломераты кристаллов твердых углеводородов обеспечивают высокие скорость фильтрования и выход депарафинированного масла. Затем в скребковых кристаллизаторах температуру суспензии понижают до требуемой температуры фильтрования. Кристаллы парафина отделяются от м асла филы1ро.ванием в одну или более ступеней в зависимости от заданного содержания масла в парафине. Дополнительной обработки не требуется. Для предотвращения образования льда в оборудовании, работающем с холодным растворителем, применяется система осушения растворителя. Обычно в качестве растворителя используют смесь метилэтилкетона с метилизобутилкетоном или толуолом. По этой технологии можно депарафинировать сырье практически любой вязкости и получать масла с низкой температурой застывания при увеличении скорости фильтрования суспензии на 40—50% и уменьшении содержания масла в гаче до 2—15% (масс.) при одноступенчатом фильтровании. В случае двухступенчатого фильтрования получается парафин с содержанием масла менее 0,5% (масс.). [c.165]

    Схема экстракции по методу Редокс приведена на рис. 6-3-9 [353, 391]. Растворителем служит метилизобутилкетон, а высали вающим соединением А1(НОз)з. Для окисления плутония в сыреа вводится бихромат натрия МагСГаО,, количество HNOз меньше, чем необходимое для образования нитрата уранила, что обеспечивает низкий коэффициент распределения для примесей. Промывающей жидкостью в первой колонне служит раствор нитрата алюминия и бихромата натрия. Во вторую колонну вводится восстановитель и образуется Ри , нерастворимый в метилизобутилкетоне, благодаря чему уран и плутоний разделяются. Водный урановый экстракт после концентрации выпариванием еще раз очищается в двух последовательных колоннах. В конечном итоге содержание примесей в уране уменьшается в 10 —10 раз. Содержание Ри в и меньше десяти частей на биллион, а и в Ри— менее 1 %. Выход Ри и и более 99,5 %. [c.435]

    В установке для разделения урана, плутония и продуктов распада, построенной в США в 1951 г., стоимостью 800 тыс. долларов, производительностью около 350 кг урана в сутки, в качестве растворителя применен трибутилфосфат. Диаметр экстракционных колонн с пульсацией составляет 250 мм при высоте 6,6—13 м 1377]. В Айдахо (США) в качестве растворителя в экстракционной установке применен метилизобутилкетон [347, 383, 403], подобно тому как в Винд-скейле (Англия) [3941. [c.435]

    Тантал и ниобий вводились в смесь кислот в виде гидратов окисей, полученных путем гидролиза безводных хлоридов. Весовое отношение ниобия и тантала составляло 1,2. В проведенных определениях пользовались 3,3 н. фтористоводородной кислотой и 0,5 н. соляной кислотой, в 1 л смеси кислот содержалось 16 г тантала и 19,2 г ниобия. Отношение органического растворителя и кислотной фазы было равно 1 1. В условиях опытов в органическуюфазу переходил главным образом тантал, ниобий—в гораздо меньшем количестве. Наиболее благоприятное распределение достигается при применении метилизобутилкетона (р =736), который применялся и в дальнейших исследованиях, а также циклогексанона ( 5=856). В дальнейшем было установлено, что экстракция заметно зависит от концентрации кислот и металлов и лишь в ничтожной степени от отношения ниобия к танталу в исходном растворе. С увеличением концентрации фтористоводородной и соляной кислот количество экстрагированного ниобия в исследованном интервале концентраций непрерывно увеличивается, а количество тантала сначала увеличивается до некоторого максимума, а затем уменьшается. Такое поведение металлов облегчает их разделение. В случае одной фтористоводородной кислоты (без соляной) максимум экстрагирования тантала достигается [c.450]

    Хром переводится в бихромат натрия Na2 r ,07, ванадий—в ванадиевую кислоту HVOj. В безводном состоянии бихромат слабо растворим в немногих органических жидкостях (спиртах). Хорошая растворимость связана с химической реакцией, что делает эти жидкости непригодными. Но для кислого раствора бихромата и ванадиевой кислоты найдены растворители (кетоны), которые не реагируют с соединениями этих металлов и хорошо растворяют только один из них. В табл. 6-9 ириведены-результаты испытания некоторых органических жидкостей на растворимость и химическое взаимодействие с безводным бихроматом натрия, его кислым (1 М НС1) водным раствором и ванадиевой кислотой. Так как метилизобутилкетон относительно дешев и слабо растворим в воде (2% при 20 С), то он рекомендуется в качестве растворителя н подробно изучен. [c.454]

    Инд и й, содержащийся в количествах, которые называют следами, экстрагируется из водных НВг растворов метилизобутилкетоном [5201 в виде ТпВГо. Хлориды индия [520, 5211 из водных растворов H I лучше всего экстрагируются циклогексаноном, а затем метилизопропилкетоном, метилизобутилкетоном, этилацетатом, этиловым эфиром и др. Хлорпроизводные углеводородов (хлорбензол) п ароматические углеводороды (бензол, толуол, ксилол и др.) оказались плохими растворителями. [c.458]

    Благодаря низкой растворяющей способности по отношению к твердым углеводородам и высокой растворимости в них масляных углеводородов такие растворители, как метилизобутилкетон и н-метилпропилкетон, могут быть использованы как индивидуальные, а не в смеси с ароматическими углеводородами [39, 48, 49]. Растворяющую способность высших кетонов и их смесей с ацетоном и метилэтилкетоном можно регулировать, изменяя содержание в них воды. При обезмасливании продуктов с целью получения высокоплавких твердых углеводородов используют насыщенный водой метилизобутилкетон, позволяющий проводить обезмасливание при более высокой температуре, причем выход церезина увеличивается на 1—2% [40]. К недостаткам изученных кетонов следует отнести их малую доступность и дороговизну. Кетоны с семью углеродными атомами в молекуле и более высокомолекулярные не используют в процессах депарафинизации и обезмас-ливания, что объясняется их высокой вязкостью при низких температурах, затрудняющей кристаллизацию твердых углеводородов. Кроме того, более высокая температура кипения таких кетонов усложняет их регенерацию. [c.145]

    Еще одним достоинством высокомолекулярных кетонов и их смесей с низкомолекуляриыми кетонами является возможность регулировать растворяющую способность таких смешанных растворителей изменением содержания в них воды. Так, при обезмасливании твердых углеводородов [68, с. 179] используют насыщенный водой метилизобутилкетон, что исключает оборудование для осушки растворителя. На такой установке осуществляется порционная подача растворителя, причем расход его увеличивается от начального разбавления к конечному. Это обеспечивает максимальный рост кристаллов при раздельной кристаллизации твердых углеводородов и, как следствие, хорошую проницаемость осадка на фильтре. Пониженная растворяющая способность обводненного метилизобутилкетона по отношению к твердым угле- [c.157]

    Выбор растВ Орителя во многом определяется природой сырья. В случае карбамидной депарафинизации легких фракций с большим содержанием н-парафинов применяют изооктан, алкилат или бензин, для фракций с высоким содержанием ароматических компонентов — дихлорэтан, для остаточного масла — крезол, а для сырой нефти — раствор хлористого метилена. Лучшие результаты карбамидной депарафинизации как топлив, так и масел, получены при использовании полярных растворителей, таких как изопропанол, метилэтилкетон и особенно метилизобутилкетон и хлористый метилен. Алкилкетоны и различные ненасыщенные алифатические кетоны рекомендованы [60] для депарафинизации карбамидом как в чистом виде, так и в смеси друг с другом, особенно для водного раствора карбамида. Есть сведения 65] о воз- [c.215]

    Все более широкое распространение получает кетоновый растворитель — смесь МЭК с метилизобутилкетоном (МИБК), разработанный за рубежом для процесса депарафинизации дилчилл. [c.225]

    Активаторы. Для образования комплекса непосредственное механическое смешение депарафинируемого нефтяного продукта с карбамидом и поверхностный контакт недостаточно эффективны. Необходим теСный контакт реагирующих продуктов. Это объясняется нерастворимостью карбамида в нефтепродуктах. Очень тонкое и интенсивное истирание карбамида с нефтепродуктом такке не дало положительного результата - образовавшийся комплекс разлагался. Хорошее взаимодействие карбамида с парафином возможно лишь при создании для них гомогенной среды. Однако основные растворители, хорошо растворяющие парафин (например, углеводородное), не растворяют карбамад, а растворители, хорошо растворяющие карбамид (вода, низшие спирты), не растворяют парафин. Растворителями, которые одновременно растворяют парафин и карбамид, могут в известной мере служить изопропиловый спирт, метил-этилкетон, метилизобутилкетон, хлористый метилен, дихлорэтан и другие. Однако удовлетворительная растворяющая способность этих растворителей для нефтяных продуктов и содержащегося в них парафина остается невысокой для карбамида. [c.73]

    ДепараДинизадия кароамндом в растворе металиэобт-тана [13. 15]. Установка предназначена для депарафинизации газойлевых фракций. В качестве разбавите ш сырья ж активатора используют метилизобутилкетон, в качестве растворителя карбамида - воду, фазы разделяют на вакуум-фильтрах. [c.145]

    Разработанный в СССР способ депарафинизации нефтепродуктов кристаллическим карбамидом с применением в качестве растворителя-активатора низших нитроалканов [72] позволит, по мнению авторов этой работы, упростить процесс. С целью улучшения качества нидких парафинов, упрощения процесса депарафинизации воднш раствором карбамида и кристаллическим кар Замидом в запатентованы [73] способы комплексообразования в присутствии растворителя легче или тяжелее комплекса и метилизобутилкетоне (МИБК). Запатентованный способ карбамидной депарафинизации позволяет получать чистые н-алканы через комплексы, представляющие собой мелкокристаллический порошкообразный продукт. Получение и обработка комплекса в присутствии смеси углеводородов Сд - С0 о 5-30 вышекипящих соединений, предпочтительно в присутствии МКШ, позволяет весТи комплексообразование при 20-35°С. Получаемый комплекс легко отделяется на центрифугах. Известны и другие способы, которые, однако, в промышленность не внедрены. [c.158]

    В качестве растворителя для карбамида применяют воду или водные растворы низших спиртов, а для нефтяных фракций (в частности, для уменьшения их вязкости)— углеводороды, галогеналкилы, кетоны. Если по технологии желательно иметь гомогенную жидкую смесь, то используют спирты и кетоны. изостроения (изопропиловый спирт, изобутн-ловый спирт, метилизобутилкетон и т. д.). [c.316]

    Растворители обычно состоят из полярных компонентов (оса-дителей парафина) и неполярных (углеводородных) компонентов— разбавителей масла. Полярные компоненты растворителя осаждают парафин из охлаждаемого раствора сырья. Поскольку масляная часть сырья плохо растворяется в полярных растворителях, к ним добавляют неполярные компоненты, способствующие растворению масла. Кетоны, спирты, хлорпроизводные и альдегиды являются полярными веществами в качестве неполярных компонентов могут использоваться простейшие ароматические углеводороды (бензол, толуол), углеводороды метанового ряда (пропан, гептан и др.), непредельные углеводороды (пропилен) и др. В некоторых процессах применяют растворитель, состоящий только из полярного (высшие кетоны, метилэтилкетон, дихлорэтан) или только из неполярного (пропан, гептан и др.) компонента. Иногда растворитель состоит из смеси двух полярных компонентов, например дихлорэтана с дихлорметаном (процесс Ди-Ме), метилэтилкетона с метилизобутилкетоном, ацетоном и др. Природа применяемого растворителя оказывает существенное влияние на эффективность, обеэмас и 1я. Так, при использовании для переработки дистиллятного сырья пропана необходимо к сырью добавить модификаторы кристаллической структуры. В противном случае образуются тонкие пластинчатые кристаллы парафина, трудно отделяемые от жидкой фазы. [c.112]


Смотреть страницы где упоминается термин Метилизобутилкетон как растворитель: [c.191]    [c.191]    [c.427]    [c.428]    [c.440]    [c.70]    [c.146]    [c.37]    [c.38]    [c.114]   
Лакокрасочные покрытия (1968) -- [ c.259 , c.269 , c.298 , c.300 ]




ПОИСК







© 2024 chem21.info Реклама на сайте