Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Внутренняя оболочка

    В 1912 г. Генри Мозли (1887-1915) обнаружил, что частота рентгеновского излучения, испускаемого элементами при бомбардировке электронным пучком, лучше коррелирует с их порядковыми номерами, чем с атомными массами. Закономерная взаимосвязь между порядковым номером элемента и частотой (или энергией) рентгеновских лучей, испускаемых элементом, определяется внутриатомным строением элементов. Как мы узнаем из гл. 8, электроны внутри атома располагаются по энергетическим уровням. Когда элемент бомбардируется мощным пучком электронов, атомные электроны, находящиеся на самых глубоких энергетических уровнях, или, иначе, электроны из самых внутренних оболочек (ближайших к ядру), могут вырываться из атомов. Когда внешние электроны переходят со своих оболочек на образовавшиеся вакансии, атомы излучают энергию в форме рентгеновских лучей. Рентгеновский спектр элемента (набор частот испускаемого рентгеновского излучения) содержит в себе информацию об электронных энергетических уровнях его атомов. В настоящий момент для нас важно то, что эта энергия зависит от заряда ядра атома. Чем больше заряд атомного ядра, тем прочнее связаны с ним самые внутренние электроны атома. Тем большая энергия требуется для выбивания из атомов этих электронов и, следовательно, тем большая энергия испускается, когда внешний электрон переходит на вакансию во внутренней электронной оболочке. Мозли установил, что частота испускаемого при этом рентгеновского излучения (ее обозначают греческой буквой ню , V) связана с порядковым номером элемента Z соотношением [c.311]


    В вертикальных рядах элементов, принадлежащих к одной и той же группе, нуклеофильная реакционная способность возрастает с увеличением атомной массы. Так, из галогенов (элементы Vil группы) наибольшей нуклеофильной силой обладает иод. Несмотря на то что заряд ядра атома иода (53) намного больше, чем заряд ядра атома фтора (9), определяющие нуклео фильные свойства неподеленные пары электронов у иода находятся на большем расстоянии от ядра, и притяжение их к ядру значительно ослаблено экранирующим действием электронов заполненных внутренних оболочек. Это обусловливает большую поляризуемость внешних неподеленных пар, что облегчает взаимодействие их с атомом углерода, имеющим дефицит электронной плотности, и позволяет образовывать связь на больших межъядерных расстояниях. Таким образом, у галогенид-ионов нуклеофильная сила уменьшается п ряду  [c.101]

    Символ К К означает наличие четырех электронов на внутренних оболочках с п = 1, которые не оказывают влияния на химическую связь. Согласно экспериментальным данным, длина связи в В2 равна 1,59 А, т.е. меньще, чем в молекуле 2 (2,67 А). Энергия связи соответственно больше 274 кДж моль по сравнению с 110 кДж моль Оба эффекта обусловлены большим положительным зарядом ядра бора, который обусловливает более прочное взаимодействие с электронами. Веским аргументом в пользу теории молекулярных орбиталей явилось экспериментальное обнаружение (путем магнитных измерений) в молекуле В2 двух неспаренных электронов. Оно служит прямым подтверждением именно той последовательности орбитальных энергетических уровней и к , которая указана на рис. 12-8 если бы последовательность этих орбитальных уровней была обратной, оба электрона должны были располагаться со спаренными спинами на орбитали а , и в молекуле не было бы неспаренных спинов. (Исторически дело обстояло так неспаренные электроны в В2 не были предсказаны заранее экспериментальное обнаружение неспаренных электронов в В2 заставило пересмотреть прежние взгляды на последовательность орбитальных энергий в двухатомных молекулах и придать ей вид, иллюстрируемый рис. 12-8.) [c.526]

    В более тяжелых атомах, в которых число электронов все растет и растет, увеличивается чпсло электронов на внутренних оболочках, но на внешней оболочке число электронов остается постоянным. Так, например, порядковые номера редкоземельных элементов лежат в пределах от 57 до 71 включительно. И хотя по мере продвижения по периодической таблице мы наблюдаем увеличение числа электронов на внешней оболочке, все редкоземельные элементы имеют по три электрона на внешней оболочке. Это тождество внешних оболочек объясняет, почему элементы этой группы так неожиданно оказались похожи друг на друга по свойствам. [c.158]


    Затем через отверстия во внутренней оболочке газ поступает во внутреннее межтрубное пространство. Катализатор находится в трубах, а на их наружной поверхности имеются перегородки, расположенные таким образом, чтобы создать максимальную турбулентность потока. Подогретый газ проходит сверху вниз, поступает [c.334]

    Конечно, тут открывается большой простор для фантазии теоретика (деформируй отдельные электронные облака атомов молекулы так, или почти так, как хочешь, благо математика это позволяет ). Можно сосредоточить (локализовать) электронную плотность частично на атомах (в виде электронных пар внутренних оболочек атомов или неподеленных электронных пар валентной оболочки), а частично на химических связях (локализация электронов в поле двух ядер отвечает двухцентровому взаимодействию атом — атом, которое описывается классической символикой валентного штриха), а можно пользоваться и делокализованными орбиталями, охватывающими в принципе все атомные ядра молекулы. Разумный теоретик стремится воспользоваться этой свободой для того, чтобы построить модель, приемлемую для химика и пригодную для описания данного класса свойств. [c.210]

    Элементы вставных декад, в атомах которых заполняются внутренние -оболочки, значительно меньше отличаются друг от друга (по данному периоду), чем элементы главных подгрупп, у которых застраиваются внешние электронные слои. [c.41]

    Если осуществляется переход электрона с какой-то внешней электронной оболочки на вакансию внутренней оболочки, то при этом может происходить испускание кванта рентгеновского излучения. Это так называемая рентгеновская флуоресценция. Так, например, при А -захвате по схеме, показанной на рис. [c.138]

    Конструкция и вид разъема корпуса с торцовым разъемом корпуса в плоскости, перпендикулярной к оси насоса секционные — с торцовым разъемом каждой ступени с осевым разъемом в плоскости, проходящей через ось насоса двухкорпусные — с дополнительным внешним корпусом, рассчитанным на большое давление с защитным корпусом — со съемной внутренней оболочкой, предохраняющей основной корпус от абразивной среды в Песковых насосах футерованные, проточная часть которых защищена от химически агрессивных или абразивных сред керамикой, резиной и другими материалами. [c.24]

    К области фотохимии ( 208) относится рассмотрение химических реакций, возбуждаемых видимым светом или инфракрасными и ультрафиолетовыми лучами, т. е. практически колебаниями с длинами волн от 1000 до 10 ООО А. Энергия этих колебаний примерно 1,2—12 эв. При поглощении этих излучений усиливается вращательное движение молекул или колебания атомов и атомных групп, составляющих молекулу, и могут быть возбуждены электроны наружных оболочек атомов. Под действием излучений с меньшей длиной волны может происходить и отделение наиболее слабо связанных электронов. В отличие от этого, при поглощении рентгеновских лучей, обладающих много большей энергией, возбуждаются или отделяются электроны внутренних оболочек атома. Поэтому химическое действие рентгеновских лучей по своему характеру сильно отличается от действия видимого света или инфракрасных и ультрафиолетовых лучей. [c.551]

    Появление или отсутствие спектра ЭПР в исследуемом образце дает полезную информацию о строении вещества. При изучении химических процессов на этом основании может быть сделан вывод о радикальном или ионно-радикальном механизме реакции. При изучении строения сложных комплексов или твердых тел, содержащих тяжелые атомы с неспаренными электронами на внутренних оболочках, отсутствие сигнала ЭПР может служить указанием на особенности электронной структуры этих атомов. Применение метода ЭПР позволило обнаружить неспаренные электроны в сложных органических соединениях. При помощи метода ЭПР оказалось возможным провести количественные измерения диффузии свободных радикалов и кинетики элементарных актов с участием радикалов [c.61]

    Радиолиз существенно отличается от фотолиза. Поглощение излучений, обладающих значительно большей энергией, чем видимые, инфракрасные или ультрафиолетовые лучи, вызывает возбуждение или отрыв электронов от внутренних оболочек атомов. Первичный акт взаимодействия излучений высоких энергий с веществом [c.363]

    Изменения в энергетическом состоянии Спинов ядер и электронов Атомов в кристаллической решетке Атомов в молекулах из-за колебаний Валентных электронов Электронов внутренних оболочек Ядер [c.276]

    Отсутствие внутренних оболочек и, следовательно, эффекта экранирования приводит к тому, что электроны сильно взаимо действуют с ядром. [c.460]

    В отличие от оптических рентгеновские спектры связаны с переходами электронов во внутренних оболочках атомов. Так как длина волны рентгеновского луча соизмерима с межатомными расстояниями в кристаллах, то кристаллическая решетка является для рентгеновских лучей дифракционной решеткой. При прохождении через нее рентгеновских лучей будут наблюдаться закономерное отклонение их от первоначального направления и образование определенной дифракционной картины. Исследование диф- [c.152]


    Определенную роль релятивистские эффекты начинают играть для атомов 4-го периода, их роль возрастает при переходе к элементам ниже располагающихся периодов ПС. Поэтому отличия химических свойств элементов 6-го и 7-го периодов и индивидуальные отличия других элементов в различных подгруппах ПС в ряде случаев связаны с релятивистскими эффектами. Хотя их влияние существенно больше для электронов внутренних оболочек, имеется немало примеров определяющей роли релятивистских эффектов и для валентных электронов. [c.86]

    Группа методов рентгено- и фотоэлектронной спектроскопии, включая оже-спектроскопию, позволяет получать данные об энергиях отрыва электро нов от атомов и молекул как с внешних — валентных оболочек, так и с внутренних оболочек атомного остова. Это эффективные методы структурных исследований и высокочувствительные неразрушающие аналитические методы изучения молекул в газовой фазе, поверхности твердых тел, биологических объектов и полимеров. Особенно широко и продуктивно они применяются в катализе, адсорбции, электронике, а также как методы прямого измерения энергетических характеристик электронных состояний атомов и молекул. Эти характеристики являются уникальными в отношении возможности сопоставления их с теоретическими представлениями и модельными расчетами. [c.133]

    Если, рассматривая молекулу, можно считать, что основные электронные уровни образующих ее атомов сохраняются и смещаются мало, то валентные электронные оболочки меняются при образовании химических связей весьма существенно. Иными словами, если электроны внутренних оболочек относятся в сущности к атомам молекулы и могут быть описаны с помощью аппарата АО, то валентные электроны должны рассматриваться в терминах МО, которые строятся обычно в приближении ЛКАО. Об этом приближении уже неоднократно говорилось выше, а все, что касается важнейших свойств МО, таких, как симметрия, локализация на атомах, связях или фрагментах и локальная симметрия и т. д., одинаково важно при рассмотрении электронных УФ спектров (см. учеб- [c.141]

    Согласно предложенным моделям энергия релаксации складывается из двух составляющих —внутриатомной, которая определяется взаимодействием дырки во внутренней оболочке с электронами данного атома, и межатомной, определяемой взаимодействием дырки с электронами окружающих атомов. Вторая составляющая важна только для конденсированных фаз. Релаксационный потенциал оценивают по разности энергий молекулы и иона, рассчитываемой с помощью полуэмпирических методов квантовой химии. [c.157]

    По характеру связей углерод — элемент (С—Э) элементоорганические соединения делятся на две группы производные непереходных и переходных элементов. Непереходные элементы образуют с атомом углерода типичные а-связи за счет электронов внешней оболочки. Их внутренние оболочки содержат максимально возможное количество электронов (2, 8, 18) и участия в образовании связей не принимают. [c.334]

    Однако наиболее общий и простой метод определения зарядов ядер был дан Мозли на основе изучения спектров рентгеновских лучей. Рентгеновские волны обладают меньшей длиной волны по сравнению с видимым светом, большей частотой и, следовательно, их кванты обладают энергией. Они возникают в результате переходов электронов внутренних оболочек атомов. Эти электроны крепче связаны и находятся, следовательно, на более низких энергетических уровнях. Рентгеновское излучение обычно вызывается воздействием на вещество потока электронов, которые выбивают внутренние электроны атомов. На освободившиеся [c.454]

    Попадающие на кристалл быстрые электроны выбивают электроны из внутренних оболочек атомов, на освободившиеся орбитали переходят электроны из вышележащих уровней это сопровождается испусканием квантов рентгеновского излучения. Так, в металлическом натрии на освободившееся место в оболочке 2р может провалиться  [c.273]

    Электронные уровни энергии, связанные с движением электронов относительно ядер. Энергии уровней электронов внутренних оболочек (АЕ) порядка десятков тысяч эВ. Переходы с внутренних оболочек на незаполненные внешние дают рентгеновские спектры. Уровни внешних электронов атомов и молекул характеризуются Е порядка 10—10 единиц эВ. Переходы между этими уровнями дают оптические спектры в видимой и ультрафиолетовой областях. [c.216]

    Атом углерода (аюмный номер 6) содержит шесть электронов, два - во внутренней оболочке и четыре - во внешней. Для заполнения внешнего электронного уровня требуется четыре дополнительных электрона. Это достигается путем образования ковалентной связи. Рассмотрим самый простой углеводород метан В его молекуле каждый атом водорода отдает в совместное с атомом углерода пользование свой единственный электрон. Это можно представить следующим образом  [c.187]

    Теория электронных конфигураций (Рассел, Улиг) связывает большую легкость возникновения пассивного состояния с неукомплектованностью электронами внутренних оболочек переходных металлов, занимающих средние участки больших периодов периодической системы элементов — Сг, Ni, Со, Ре, Мо, W, имеющих незаполненные d-уровни в металлическом состоянии. [c.309]

    Уравнение (1.38) легко может быть получено теоретически. Как мы знаем, рентгеновский спектр обусловлен переходами электронов на внутренних оболочках атома. Для атомов и ионов с одним электроном терм выражается соотношением (1.6). Видоизменим это соотношение применительно к электрону на одной из внутренних оболочек атома. Электроны, находящиеся на большем расстоянии от ядра, чем рассматриваемый, оказывают малое влияние на энергию последнего, так как они значительно менее прочно связаны с ядром их воздействием на рассматриваемый электрон можно пренебречь. Те электроны, которые находятся между рассматриваемым электроном и ядром, уменьшают притяжение электрона к ядру. Этот эффект можно формально рассматривать как уменьшение действующего на электрон заряда ядра иа некоторую величину Ь, называемую постоянной экранирования. Тогда выражение для терма приобретает вид Т =/ [ (2 — Ь). Отсюда можно найти волновое число  [c.36]

    Внутренняя оболочка резервуара была выполнена из низкоуглеродистой стали с добавкой 3,5% никеля, её толщина в "Отчете" не указывается, однако отмечается, что для данных резервуаров проводилось испытание на ударную нагрузку при температуре ниже -45 °С. Внешняя оболочка была выполнена из мягкой стали. Первоначально бьши установлены три сферических резервуара радиусом 17,4 м. Резервуар N 4 (диаметр 21 м, высота 13 м) бьш построен позже. Причиной выбора вертикально-цилиндрической формы резервуара (иногда подобный резервуар называют тороидально-сегментным) послуж1шо мнение фирмы-изготовителя, что такой резервуар выдерживает более высокие напряжения по сравнению со сферическим. [c.198]

    Используемые изотермические баллоны имеют двойную оболочку внешнюю — из углеродистой стали, внутреннюю — из модифицированной легированной стали. Внутренняя оболочка покрыта несколькими слоями теплоотражающей металлизированной фольги, а само пространство между оболочками вакууми-ровано. Такая конструкция баллона позволяет хранить сжиженный газ в течение 5 сут практически без потерь. Для различных моделей автомобилей предлагается следующий типоразмерный ряд изотермических криогенных баллонов  [c.149]

    Примером существования аналогичных глобул в биологии является сгроение вируса гепатита (рис. 13), который имеет сплошную структуру полная вирусная частица сосгоит из двух белковых оболочек и ДНК, заключенной внутри капсида (внутренней оболочки). Интересно, что форма вируса может быть как сферическая, напоминающая фуллерен, так и продолговатая, напоминающая тубелен. [c.23]

    Был также изготовлен и испытан фрагмент бонового ограждения третьего типа (рис. 3.7в) диаметром 300 мм и длиной 2500 мм. Внутренняя оболочка из технической резины толщиной 0,5 мм имела диаметр 250 мм, длину 2400 и была снабжена штуцером с целью подключения к компрессору для заполнения оболочки воздухом. Пространство между проницаемой оболочкой из редкой хлопчатобумажной ткани и резиновой оболочкой заполнялось сорбентом СИНТАПЭКС . [c.110]

    Химические свойства молекул определяются валентными электронами, число которых, особенно в случае молекул, содержащих атомы тяжелых элементов, составляют лишь небольшую долю общего числа электронов системы. Поэтому желательно задачу расчета молекулы сформулировать так, чтобы в ней рассматривалась только система валентных электронов. Трудность состоит в том, чго надо учитывать не только поле (кулоновское и обменное), создаваемое электронами внутренних оболочек, но и требование ортогональности (в общем случае линейной независимости) орбиталей валентных и внутренних оболочек. Свести задачу расчета всей молекулы к задаче расчета системы валентных электронов можно с помощыо метода псевдопотенциала, который появился в 50-е годы в теории твердого тела и с тех пор бурно развивается . [c.272]

    Как уже упоминалось, неподеленные пары электронов иодид-нона, определяющие нуклеофильные свойства, находятся на большем расстоянии от ядра, и притяжение их к ядру ослаблено экранирующим действием электронов внутренних оболочек, по сравнению с остальными галогенами, что делает их более поля )изуемыми при воздействии внешних полей и, следовательно, более реакционноспособными и реакциях нуклеофильного замещения. При оценке же оснонностн решающую роль играет размер иопа н, следовательно, электронная плотность, которая изменяется обратно пропорционально радиусу иона. Чем меньше радиус иона, тем сильнее он притягивает к себе протон и тем больше его основность. [c.104]

    Из таблицы видно, что величина др с ростом квантового числа п уменьшается, хотя и не в строгом согласии с теорией. При расчетах <г > и др по спектральным данным вводят ряд поправок, в частности, на конфигурационное взаимодействие, поляризацию внутренних оболочек и эффект экранирования. Последние два эффекта учитывают с помощью так называемого фактора Штернхаймера для свободного атома —V . путем умножения на (1—уос). Этот [c.106]

    Другой возможный pe faк aциoнный процесс — это безызлуча-тельный переход электрона из внешней валентной оболочки на вакансию во внутренней оболочке атома освобождающаяся при этом энергия, равная разности соответствующих энергий связи электрона, например Есв К)— св(/.1п) или Есв К) — св( п). может привести к эмиссии электрона с одного из уровней (рис. VI.1, г) внешней оболочки, например щ, как показано на схеме рис. VI. , г, поскольку св( ш) < св( ()— св( п). Это так называемый (LL — оже-процесс. Измеряемая в КЬЕ ОЭС кинетическая энергия выбрасываемых оже-электронов определяется равенствами типа [c.139]

    Источники. В ЭСХА для возбуждения электронов внутренних оболочек источником излучения служит рентгеновская трубка. Обычно используется монохроматическое излучение /( Мд с энергией 1253,6 эВ или /СаА1— 1486,6 эВ. Ширина возбуждающей линии порядка 1 эВ. Если необходимо получить высокое разрешение, используют дополнительную монохроматизацию (кристаллами), что приводит к сужению возбуждающей линии и увеличению разрешающей способности прибора. [c.147]

    Рентгеновские спектры атомов и ионов укладываются в общую систематику атомных спектров. Они возникают при во.збуждении электронов внутренних оболочек атома. Их отличие от оптических спектров определяется тем, что эти оболочки заполнены, поэтому [c.227]


Смотреть страницы где упоминается термин Внутренняя оболочка: [c.434]    [c.273]    [c.167]    [c.167]    [c.138]    [c.226]    [c.136]    [c.144]    [c.251]    [c.138]    [c.180]    [c.58]   
Теория молекулярных орбиталей в органической химии (1972) -- [ c.167 ]




ПОИСК





Смотрите так же термины и статьи:

Оболочка



© 2025 chem21.info Реклама на сайте