Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические углеводороды состав в нефтях

    Нефть. Это важнейшее сырье считается горючим ископаемым, представляющим собой смесь различных углеводородов. Состав нефти зависит от месторождения. Так, сырая нефть с острова Борнео богата ароматическими углеводородами (около 39%), американская среднеконтинентальная нефть — предельными углеводородами, нефть бакинского месторождения -циклопарафинами (90 %). Помимо углеводородов, нефть содержит около 10% сернистых, азотистых и кислородсодержащих соединений. [c.283]


    Алифатические углеводороды, в больших количествах содержащиеся в нефти, не использовались непосредственно для химической переработки, хотя являлись чрезвычайно дешевым сырьем. Это вызывалось двумя причинами. Нефть представляет собой весьма сложную смесь углеводородов, состав которой изменяется в широких пределах в зависимости от происхождения. Высокомолекулярные компоненты или тяжелые фракции нефти сравнительно мало изучены даже в настоящее время. Кроме того, углеводороды нефти лишь с трудом и вместе с тем не однозначно взаимодействуют с реагентами, обычно применявшимися для химической переработки ароматических углеводородов. Поэтому нефть длительное время не привлекала серьезного внимания промышленности органического синтеза. [c.8]

    Пикратный метод для выделения высших ароматических углеводородов из нефти неприменим, так как эти углеводороды пикратов не образуют. Хроматография, во всяком случае, позволяет выделить из нефтяных фракций чистые ароматические углеводороды, особенно при повторном хроматографировании. Анализ этих углеводородов показывает, что с ростом температуры кипения цикличность увеличивается с 2 до 4, чаще до 3. Элементарный состав также показывает постепенный рост содержания углерода, что наряду с определением молекулярного веса позволяет отнести выделенные углеводороды к классам от С Н2 )2 ДО С Н2п—18-Как правило, получаются эмпирические формулы с дробными показателями, например, С Н2 17,1 или С Н2п-19,5 и т. п., так как хроматографирование в его общепринятой форме не позволяет сразу выделить индивидуальные вещества или даже вещества одного ароматического ряда. Всегда можно предполагать, что полученная узкая фракция представляет собой смеси близких классов, например нафталина и антрацена в переменных отношениях. [c.118]

    Г рупповой состав фракции н. к. — 300 °С ароматические. . . нафтеновые. ... метановые. ... Выход фракции на нефть, % н. к. — 300 °С. . . н. к. — 550 °С. . . Содержание ароматических углеводородов, % на фраК цию н. к. — 150 °С. Содержание ароматических углеводородов, % на нефть [c.22]

    Шестичленных нафтенов больше в вишанских нефтях (в среднем 12 и 9% соответственно). Причем Среди циклогексанов больше всего метилциклогексана, содержание которого в исследуемых фракциях достигает 4— 5 вес., %. Наблюдается закономерное соответствие между содержанием ароматических углеводородов и шестичленных нафтенов в легких фракциях вишанских нефтей,, более богатых шестичленными нафтенами, содержится больше ароматических углеводородов, чем в соответствующих фракциях давыдовских нефтей. При сравнении нефтей одного и того же месторождения между собой прослеживается еще одна интересная закономерность несколько более высокому содержанию ароматических углеводородов в нефтях из скв. 13 и 3 (на 0,2—0,3% в расчете на нефть) соответствует меньшее содержание (также на 0,2—0,3 вес.%") шестичленных нафтенов. Указанные закономерности, по-видимому, можно рассматривать как дополнительные факты в пользу гипотезы о протекании гидро-дегидрогенизационных превращений шестичленных циклических углеводородов при формировании нефти. Состав ароматических углеводородов, выделенных из фракций 125—150 °С исследуемых нефтей,, представлен в табл. 67, 68 и 72. [c.91]


    Природа конденсированных ароматических углеводородов входящих в состав керосиновых фракций некоторых советских нефтей исследована С. С. Наметкиным с сотрудниками [7, 8]. [c.37]

    Таким образом, органические соединения серы наряду с наф-тено-парафиновыми и нафтено-ароматическими углеводородами являются одним из основных компонентов в базовых, маслах, получаемых из сернистых нефтей, и влияние этих соединений нельзя не учитывать при оценке эксплуатационных свойств масел и их поведения в двигателях и механизмах. В маслах содержится примерно равное количество сульфидов и компонентов так называемой остаточной серы, куда в основном входят гомологи тиофена, тиофана и гетерополициклические соединения, содержащие серу [83, 84]. Сера входит и в состав смолистых продуктов, присутствующих в масляных дистиллятах и товарных маслах. В маслах имеется небольшое количество дисульфидов и меркаптанов [85]. Содержание ме ркаптанов в глубокоочищен-ных маслах, получаемых из сернистых нефтей, составляет (l,6- 4-3,2)10-3% (масс.). В исходных сернистых дистиллятах содержится (4,5- 5) 10-3% (масс.) меркаптанов. В маслах, полученных из малосернистых нефтей, меркаптаны не обнаружены. [c.67]

    В- зависимости от месторождения нефть имеет различный состав. Некоторые виды нефти состоят преимущественно из предельных углеводородов. Другие содержат много ароматических углеводородов. Бакинская нефть [c.61]

    Сырая нефть, добываемая из разных месторождений, имеет различный состав. В нее входят предельные углеводороды и углеводороды циклического строения (нафтены). Содержание ароматических углеводородов в нефти невелико и сырая нефть сама по себе не является источником их получения. Путем высокотемпературной обработки — пиролиза — можно превратить углеводороды, входящие в состав нефти, в ароматические углеводоро- [c.6]

    Сырая нефть, добываемая из разных месторождений, имеет различный состав. В нее входят предельные углеводороды н углеводороды циклического строения (нафтены). Содержание ароматических углеводородов в нефти невелико и сырая нефть сама по себе не является источником их получения. Путем высокотемпературной обработки — пиролиза — можно превратить углеводороды, входящие в состав нефти, в ароматические углеводороды. Этот процесс, который протекает при температуре 650—700° С, называют ароматизацией нефти. Из жидкой фракции продуктов пиролиза при разгонке получают бензол, толуол, нафталин и некоторые другие ароматические углеводороды. [c.6]

    Бензины. В ранний период развития автомобильной промышленности простая перегонка нефти давала более чем достаточное количество бензина для удовлетворения потребности в топливе для двигателей. Получаемый таким образом бензин называется бензином прямой перегонки. Он состоит преимущественно из алканов и некоторого количества цикланов и ароматических углеводородов. Состав бензинов существенно различается и зависит от месторождения перегоняемой нефти. [c.216]

    Избирательный дегидрогенизационный катализ, открытый и разработанный акад. Н. Д. Зелинским [1] н его школой, имеет не только теоретический, но и большой практический интерес. Это открытие дает возможность изучать химический состав нефти, облагораживать бензиновую фракцию, ароматизировать бензиновую и керосиновую фракции, что имеет весьма большое народнохозяйственное значение. Ароматические углеводороды являются весьма желательными составными частями бензина, поэтому, чем больше ароматических углеводородов содержит бензин, тем он ценнее, как сырье для получения ароматических углеводородов. Большинство природных бензинов не содержат в достаточном количестве ароматических углеводородов. Метод акад. [c.185]

    Смолы и асфальтены относятся к высокомолекулярным неуглеводородным соединениям нефти [135,136]. В составе нефти они играют важную роль, определяя во многом ее физические свойства и химическую активность. В состав смол и асфальтенов входят полициклические ароматические структуры, состоящие из десятков колец, соединенных между собой гетероатомными структурами, содержащими серу, кислород, азот. Смолы - вязкие мазеподобные вещества, асфальтены - твердые вещества, не растворимые в низкомолекулярпых растворителях. Молекулярные массы смол 500-1200, асфальтенов - 1200-1300 [143]. Содержание ароматических углеводородов в нефти изменяется от 5 до 55 %, чаще всего 20-40%. Основную массу ароматических структур составляют моноядерные углеводороды - гомологи бензола. Полициклические ароматические углеводороды (ПАУ), т.е. углеводороды, состоящие из двух и более ароматических колец, содержатся в нефти в количестве от 1 до 4 % [91]. [c.24]

    Б предыдущих работах одного из авторов [1,2] были приведены результаты исследования грузинских нефтей на содержание в них ароматических н гидроароматических углеводородов. Цель настоящей статьи— исследовать групповой состав нефти месторождения Норио с использованием метода дегидрогеиизационного катализа акад. Н. Д. Зелинского [3] для определения содержания гексагидроароматичес-ких углеводородов и прочих цикланов. [c.131]


    Интересно, что многие выделенные различными способами высшие ароматические углеводороды часто пока. ывают некоторое содержание серы и кислорода в виде соединений, не выделяемых хроматографическим исследованием на силикагеле. Из нефти Гбелы в Чехословакии были выделены ароматические углеводороды, состав которых приведен в таблице 45. [c.123]

    Нефть — это сложная смесь органических соединений, в которой доми-1 пруюш ими компонентами являются алифатические насыщенные углеводороды. Состав нефтей лежит в пределах от i до 0, , или С о и широко варьирует в зависимости от месторождения нефти. Фракция нефти, кипящая при температуре пиже 200°, содержит несколько сотен различных соединений, и том числе алканы, алкены, циклоалканы и ароматические углеводороды. [c.42]

    При помощи этого метода был изучен химический состав бензинов жирновской, ромашкинской, избаскенской, кзыл-тумшукской и других нефтей [50—55], а также углеводороды китайской нефти Карами [56]. Ароматические углеводороды итальянских нефтей исследовались спектрально-хроматографическим методом с использованием для идентификации углеводородов инфракрасной спектроскопии [И]. [c.146]

    Важным и технически интересным источником получения бензола и его гомологов, кроме указанных выше фракций, полученных риформингом, являются жидкие продукты пиролиза, образующиеся при кратковременном крекинге нефти с целью получения этилена [121]. На каждые 1000 кг этилена приходится 600—900 кг жидких продуктов, содержащих 60—70% извлекаемых ароматических углеводородов. Состав жидких продуктов в сильной степени зависит от условий работы установки по производству этилена. В среднем содержание бензола находится в пределах от 20 до 40%, толуола от 15 до 20% и ксилолов от 10 до 15%. Выделение ароматических углеводородов происходит в несколько стадий. Сначала присут-ствую1дие в жидких продуктах диены гидрируются до соответствующих олефинов. Затем очищенный продукт подвергается перегонке с разделением на первую, основную фракции и остаток. Основная фракция, кипящая в интервале от 50 до 150 °С подвергается обработке водородом при этом олефины гидрируются до алканов и удаляются серусодержащие соединения. Ароматические углеводороды затем разделяются экстрактивной перегонкой или экстракцией жидкость — жидкость. В обоих случаях в качестве растворителя используется iV-метилпирролидон. [c.1736]

    Простота, удобство и экономическая выгодность рефрактометрического производственного контроля вызывают многочисленные попытки дальнейшего расширения сферы его применения и распространения на такие объекты, анализ которых по одному показателю преломления оказывается мало обоснованным или слишком грубым. Так, отмечалась [235] недостаточная надежность прямого определения ароматики в полупродуктах и продуктах производства ароматических углеводородов из нефти на обычных рефрактометрах. В то же время эти объекты можно успешно контролировать с помощью дисперсионных рефрактометров, позволяющих точно определять групповой состав сырья и продуктов каталитического риформинга путем измерения двух показателей преломления для различных длин волн [195]. [c.59]

    Ароматические углеводороды оказывают существенное влияние на свойства трансформаторных масел. Из всех углеводородов, входящих в состав трансформаторного масла, ароматические углеводороды обладают наибольшей стабильностью против окисления и придают маслу это свойство, однако тяжелая полициклическая (полициклическая, содержащая много циклов — колец) ароматика ухудшаег диэлектрические свойства, увеличивает гигроскопичность и в процессе эксплуатации вызывает старение масел с выпадением обильных осадков. Ароматические углеводороды масляных нефтей имеют меньше колец и более длинные боковые цепи, чем аро< матика тяжелых нефтей. От строения боковых цепей зависят такие свойства, как вязкость и стабильность против окисления. [c.15]

    Все получепиые экспериментальные данные свидетельствуют о преобладании в молекулах нефтяных смол циклических элементов структуры. Наиболее вероятным представляется следующий характер построения молекул нефтяных смол осповными структурными элементами молекулы являются конденсированные циклические системы, в состав которых входят как ароматические и нафтеновые, так и гетероциклические кольца. Эти конденсированные циклические системы соединены между собою сравнительно короткими алифатическими мостиками и имеют по нескольку алифатических, реже циклических, заместителей в кольце. Конденсированные структурные элементы молекул смол и высокомолекулярных ароматических углеводородов сырых нефтей, не подвергавшихся термической обработке, содержат преимущественно два конденсированных бензольных кольца, полициклические же кондепсировапные системы если и присутствуют, то лишь в небольших количествах. В молекулах же смол и высокомолекулярных углеводородов тяжелых остатков термической, тер-мокоитактной и термокаталитической переработки нефти полициклические ароматические конденсированные системы присутствуют в значительных количествах. [c.21]

    Установление индивидуальной природы моиоцикличеекнх ароматических углеводородов, входящих в состав керосиновых фракции нефтей, являлось и[)ед.метом исследования ряда авторов [1—5]. [c.36]

    Бициклические ароматические фракции содержат сернистые соединения. УФС этих фракций показывает присутствие тетраалкилзамещенных нафталина и беязтиофенов. Насыщенные углевбдороды, полученные при термической диффузии, после каталитической дегидрогенизации в жидкой фазе (Р1, 250 °С) незначительно (5-8%) превращаются в ароматические углеводороды. Состав углеводородов, полученных восстановлением кислот, очень близок к составу нейтральных масел, выделенных из той же нефти. [c.38]

    И табл. 5 приведен состав нефтей нафтенового и нарафипового основапггя 15]. Из таблицы видно, что в нефтях парафинового основания содержа п е парафиновых углеводородов во фракциях понижается но мере повышения их температуры кипенртя, а в нефтях нафтенового основания увеличивается содержание ароматических углеводородов. [c.16]

    Установление структуры моноциклических ароматических углеводородов, входяхих в состав нефти, и.меет и чистО теоретическое значение с точки зрения образования простых гомологов бензола в процессе метаморфизма нефти. [c.28]

    Идентификация ароматических углеводородов, входящих в состав тяжелых фракций нефтей связана с больши.ми экспериментальными затруднениями, поэтому эти углеводороды мало изучены. [c.28]

    Для подтверждения возможности органического синтеза нефти были проведены прямые лабораторные экспериментальные исследования (технологический аргумент). Так, еще в 1888 г. немецкий химик К. Энглер впервые в мире произвел перегонку рыбьего жира при давлении 1 МПа и температуре 42 °С и гюлучил 61 % масс, масла плотностью 0,8105, состоящего на 90 % из углеводородов, преимущественно парафиновых от и выше. В тот же период им были получены углеводороды из растительных масел репейного, оливкового и др. В 1919 г. акад. Н.Ф. Зелинский произвел перегонку сапропелита оз. Балхаш и получил 63,2 % смолы, 16 % кокса и 20,8 % газа. Газ состоял из метана, окиси углерода, водорода и сероводорода. После вторичной перегонки смолы были получены бензин, керосин и тяжелые масла, в состав которых входили парафиновые, нафтеновые и ароматические углеводороды. В 1921 г. японский ученый Кобаяси получил искуственную нефть при перегонке рыбьего жира бе дав.ления, но в присутствии катализатора — гидросиликата алюминия. Подобные опыты были проведены затем и другими исследователями. Было установлено, что природные алюмосиликаты [c.53]

    Исследованы конденсированные ароматические углеводороды, входящие в состав керосиновой фракции с температурой кипения 200—250°С норийской нефти, с применением хроматографической адсорбции, пикратиого метода и спектроскопического анализа. [c.41]

    Ароматические углеводороды, входяиспе в состав различных нефтей, были предметом исследования ряда ав юров [2-6]. [c.46]

    За последние 150 лет параллельно с развитием основных теоретических представлений в области химии выяснялся общий состав нефти [14]. Однако замечательное постоянство химического состава сырых нефтей стало понятным лишь около 40 лет назад. Ш. Ф. Мабери на основании многочисленных и тщательно выполненных анализов нашел, что даже наиболее различающиеся между собой нефти содержат от 83 до 87 % углерода, от И до 14% водорода, а также кислород, азот и серу в количествах от 2 до 3% [28]. Он показал, что это постоянство может быть объяснено очень просто, если предположить, что каждая нефть представляет собой смесь небольшого числа гомологических рядов углеводородов, причем число индивидуальных членов каждого ряда может быть очень велико. Различие между двумя любыми нефтями заключается в вариациях содержания каждого ряда и содержания индивидуальных углеводородов, присутствующих в каждом ряду. Природа гомологических рядов, составляющих нефть, такова, что эти вариации но оказывают большого влияния на состав общей смеси. Таким образом, в результате, несмотря на некоторые различия, элементарный состав одной нефти весьма близок к элементарному составу другой нефти. Этот общий вывод имеет важное техническое значение, так как позволяет получать довольно однородные нефтяные продукты из нефтей различного состава. Вместе с тем методы переработки сырых нефтей должны быть весьма разнообразными и обеспечивать получение товарных продуктов в нужном количестве и необходимого качества. Например, небольшое содержание асфальтовых веществ не может заметно отразиться на элементарном составе всей нефти в целом, точно так же, как и увеличение содержания ароматических углеводородов в керосиновой фракции на 10% не может заметно изменить отношение содержания углерода и водорода. Однако каждое из этих изменений может значительно увеличить трудности переработки нефти и уменьшить выход чистых продуктов 2. [c.49]

    Б. А. Казанский, Г. С. Ландсберг и А. Ф. Платэ [5] с сотрудниками исследовали ароматические углеводороды, входящие в состав карачухурской, туимазииской, эмбенской и каза-булагской нефтей. [c.57]

    В данной работе исследованы ароматические углеводороды, входящие в состав патараширакской нефти. [c.57]

    Для установления индивидуальной природы ароматических углеводородов, входящих в состав бензино-лигроиновой фракций патараширакской нефти, последняя подвергалась дробной перегонке, собраны фракции с т. кип. °С 60—95 95—122 122—150 и 150—200. Для выделения ароматических углеводородов из указанных фракций, они подвергались сульфированию, сульфокислоты разлагались [6]. Выделенные ароматические углеводороды после соответствующей промывки и сушки перегонялись. Собраны фракции, физические показатели которых даны в таблице. [c.57]

    Для идентификации ароматического углеводорода, входящего в состав фракции 165—170°, фракция нитровалась. Судя по температуре кипения фракции она должна содержать псевдокумол с т. кип, 169°. Нитрованием фракции 165— 170 получен нитропродукт, который после перекристаллизации из бензола плавился при 179—180°, что указывает на присутствие тринитропсевдокумола в продуктах нитрования и псевдокумола в исследуемой нефти. [c.59]

    Гексагидроароматическне углеводороды, входящие в состав фракции 122—150° норийской нефти, путем дегидрогени-зационного катализа были переведены в соответствующие ароматические углеводороды. [c.75]

    С никоторых пор стал возможен анализ ароматических углеводородов Се, С, и Сд в бензиновых фракциях. Однако для болео высококипящих фракций в настоящее время анализ на индивидуальные компоненты невозможен вследствие бо.11ьшого числа изомеров в данных пределах ки- пения и близости температур кипения углеводородов различных классов. При разработке процессов переработки нефти чрезвычайно важно знать состав высококипящих фракций, например исходных и конечных фракций каталитического крекинга. Особенно важно знать содержание различных классов ароматических углеводородов. Хроматография является превосходным методом их количественного разделения. Типы ароматических соединений во фракции можно определить по спектрам поглощения в ультра- [c.286]

    Мирзаанская нефть нз скиажины № 140 с удельным весом — 0,8699 несколько раз подвергалась дробной перегонке. Полученная фракция 60—150 взбалтывалась с 75%-ной серной кислотой в теченне 15 мин, после чего промывалась водой, 10%-ным раствором соды, снова водой, сушилась хлористым кальцием и перегонялась в присутствии металлического натрия. Для указанной фракции определялись удельный вес, показатель лучепреломления н максимальная анилиновая точка. Для опытов нрнменялн сухой и свежеперегнанный анилин, чистота которого проверялась посредством анилиновой точки чистого индивидуального углеводорода. Ароматические углеводороды, находящиеся в мирзаанской нефти (фр. 60—150°), удалялись действием серной кислоты удельного веса 1,84. Смесь бензина и серной кпслоты помещалась о склянке с притертой пробкой и взбалтывалась при комнатной температуре. Полное удаление ароматических углеводородов проверялось качественной реакцией (серная кислота + формалин). Деароматизированная фракция промывалась, сушилась н перегонялась в присутствии металлического натрия, после чего определялись те же константы, что и до обработки серной кислотой. По изменению максимальных анилиновых точек и с применением коэффициентов, приведенных в трудах ГрозНИИ [18] определялся групповой состав вышеуказанной фракции. [c.226]

    Состав бензинов и других фракций каталитического крекинга определяется способностью катализаторов крекинга (алюмосиликатов) вызывать изомеризацию и диспропорционирование водорода. В результате этих процессов в каталитических крекинг-бензинах преобладают разветвленные парафины, разветвленные олефииы с открытой цепью, алкилциклопентаны, циклопентены и ароматические углеводороды. В табл. 3 и 4 ясно показано, что нормальные парафины от пентана до октана, преобладающие в термических крекинг-бензинах и бензинах прямой гонки из нефти Мид-Континента, в каталитических крекинг-бензинах имеются в относительно небольшом количестве. Из парафинов более всего преобладают разветвленные парафины с одной метильной группой в боковой цепи, такие как метилбутаны и метилпентаны. Обычно алкилциклопентаны [c.50]

    Состав риформинг-бензинов зависит от условий риформинга. Бензины, полученные при процессах термического риформинга и полифор-минга, подобны термическим крекинг-бензинам, но содержат несколько больше ароматических углеводородов. В противоположность этому, бензины, полученные каталитическим риформингом нафтеновых лигроинов, являются преимуш,ественно ароматическими, что обусловливается дегидрогенизационным влиянием катализатора на циклопарафиновые углеводороды. Рид [6] дает следуюш ий состав лигроина, полученного из бензина прямой гонки нефти Голфкоста после каталитического риформинга  [c.55]


Смотреть страницы где упоминается термин Ароматические углеводороды состав в нефтях: [c.175]    [c.4]    [c.28]    [c.37]    [c.116]    [c.137]    [c.15]    [c.79]   
Технология органического синтеза (1987) -- [ c.19 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматические углеводороды в нефт



© 2024 chem21.info Реклама на сайте