Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь химическая мостиковая

    Конфигурации 56—59 и 62—68 не дают однозначной характеристики структур, поскольку существует возможность изомерии, основанная на деталях стереохимии каждого атома осмия. Даже в тех случаях, когда симметричные по форме мультиплеты в спектре ЯМР говорят о магнитной эквивалентности двух связей с атомами фосфора, лиганды не обязательно химически эквивалентны вследствие возможности эффективного взаимодействия. Атомы металла в этих структурах будут иметь электронную конфигурацию инертного газа, если представить себе простые связи металл—металл в тех случаях, когда линии проведены между металлами, и трехцентровые двухэлектронные связи, образованные мостиковыми водородами. [c.169]


    К особенностям химического поведения водорода следует отнести способность к образованию гидридов различных типов, в которых возможно образование как протонных (например, (НР)х), так и гидридных водородных мостиковых связей в электронодефицитных соединениях (ВгНе). В некоторых комплексах переходных металлов атом водорода непосредственно связан с атомом металла. [c.460]

    При введении щелочных и щелочно-земельных оксидов структурная сетка из тетраэдров [5104] разрывается, при этом вместо одного мостикового кислорода образуется два немостиковых, каждый из которых соединен химической связью только с одним кремнием. Схематически это можно показать так  [c.202]

    Поскольку в структуре атомов галогенов недостает лишь по одному электрону для построения оболочки инертного газа, то для всех этих элементов характерна ковалентность 1 и степень окисления —1. Этим и исчерпываются валентные возможности фтора (за исключением мостиковых соединений), так как у атома фтора во внешнем электронном слое нет свободных квантовых ячеек и разъединение спаренных электронов практически происходить не может. Возбуждение, связанное с переводом одного 2р-электрона на уровне Зз, требует (в расчете на 1 моль атомов) затраты 1225 кДж/моль. Такие большие энергетические затраты не окупаются энергией, которая выделяется при образовании химических связей возбужденным атомом. [c.140]

    Способность стекол и многих полимеров затвердевать в аморфном состоянии связана с особенностями их химического строения. Для стекол (силикатных, боратных и др.) характерно образование пространственной сетки связей. В случае силикатных стекол определяющим структуру фактором является способность оксида 5102 создавать простирающуюся по всему объему сетку связей, в которой каждый атом кремния соединен с четырьмя атомами кислорода, расположенными в вершинах тетраэдра (атом кремния в центре), а каждый атом кислорода соединен с двумя атомами кремния (мостиковый кислород). Тетраэдры имеют общие вершины. В кристаллическом кварце тетраэдры образуют регулярную периодическую структуру, а в стеклообразном сохраняется локальная упорядоченность, но периодичность и регулярность структуры пропадают. [c.195]

    Поверхностные хемосорбированные образования не могут быть выделены в виде индивидуальных химических соединений. Поэтому интерпретация их спектров целиком основана на сопоставлении со спектрами соединений, структура которых хорошо известна. Особенно сложна интерпретация спектров, когда на поверхности одновременно образуется несколько различных форм хемосорбированных соединений, а поглощение света катализатором ограничивает доступную для изучения область спектра. Так, например, по инфракрасным спектрам хемосорбированной окнси углерода на металлах было показано образование двух главных типов связей мостиковой (I) и линейной (П)  [c.179]


    Установлено, что кристаллизационные и физико-химические свойства стекол и стеклокристаллических материалов изученных систем определяются положением ионов кремния и алюминия в структуре кальций-фосфатной матрицы. В изученных стеклах кремний выступает в роли стеклообразователя и встраивается в цепочку фосфатных тетраэдров в виде тетраэдра [8104]. При этом происходит перераспределение длины и прочности мостиковых связей в цепочке за счет разности электроотрицательностей ионов кремния и фосфора, что приводит к разупрочнению [c.24]

    Соединение мелких частиц в более крупные агрегаты. Данный процесс может идти за счет образования мостиковых связей между частицами в результате химических реакций, или комплексов с молекулами полимеров, или агрегатирования коллоидных частиц. [c.168]

    Механизм образования угольной пластической массы по аналогии с примерами заключается в следующем (по Н.С.Грязнову). При нагреве углей происходят разукрупнение жестких макромолекул и разрушение пространственных структур вследствие разрыва эфирных, метиленовых и других мостиковых связей. Образовавшиеся свободные радикалы блокируются и насыщаются водородом и малыми радикалами. В этих процессах решающую роль играет перераспределение водорода между образующимися продуктами, поэтому одни из них обогащаются водородом и становятся насыщенными молекулами, а другие обедняются водородом, становятся ненасыщенными и участвуют в процессах конденсации. Упрощенно это может быть интерпретировано в виде следующего химического уравнения  [c.144]

    Исследования этого рода дают возможность успешно разрешить ряд проблем теории химической связи, особенно различных видов мостиковых связей [3], оценить реакционную способность алюминийорганических соединений, классифицировать и объяснить спектры молекулярных колебаний [4], а также изучить их диэлектрические свойства [2, 5]. [c.131]

    Пришли к заключению, что специфические химические силы взаимодействия должны иметь возможность преодолевать электростатические силы отталкивания. Адсорбция таких разновидностей железа на кремнеземе при одинаковом по знаку заряде должна включать образование связей Si—О—Fe. Такое положение согласуется с идеей о том, что образование химических связей между частицами кремнезема посредством включения в связь промежуточного мостикового атома или же промежуточной частицы фактически может представлять собой силы притяжения вместо предполагаемых вандерваальсовых сил , по крайней мере для случая кремнезема. Согласно некоторым авторам [220, 258], положительно заряженные коллоидные частицы — поликатионы действуют подобно мостикам между отрицательно заряженными частицами кремнезема, формируя таким образом трехмерную сетку. В таком случае коагулянт представляет собой часть осадка. Хан и Стамм [259, 260] выявили стадию, определяющую скорость процесса коагуляции частиц кремнезема при использовании гидролизованных ионов алюминия. Они постулируют три различающиеся стадии а) образование коагулянта в виде поликатионной разновидности посредством гидролиза и полимеризации алюминия (III) б) дестабилизацию дисперсии в результате специфической адсорбции изополикатионов, которая понижает потенциал поверхности коллоидных частиц кремнезема эта стадия обозначается как адсорбционная коагуляция в) перенос коллоидных частиц за счет броуновского движения или же существования градиента скоростей. Стадии а) и б) протекают быстро, тогда как стадия в) оказывается медленной, т. е. этапом, определяющим скорость всего процесса. Скорость коагуляции была получена как произведение значения частоты столкновений частиц на фактор эффективности таких столкновений. Авторы провели различие между адсорбционной коагуляцией в том случае, когда имеется скопление коллоидных частиц с гидролизованными ионами металла, способными сильно адсорбироваться на поверхности коллоидного кремнезема, и дестабилизацией в случае существования негидролизованных ионов металла, когда адсорбция указанных ионов оказывается значительной относительно общего количества ионов, присутствующих в растворе. [c.518]

    Активированный водород через систему химических связей, создаваемых мостиковыми атомами серы, передается на адсорбированную молекулу тиофена, обеспечивая гидрирование тиофено-вого кольца. Образовавшаяся молекула тетрагидротиофена, будучи более основной, чем молекула тиофена, остается прочно связанной с активным центром катализатора и далее подвергается гидрогенолизу с образованием бутана (бутенов), сероводорода и регенерацией катализатора. [c.808]

Рис. 21-7. Кремний образует полимерные цепи двух типов силаны с высокой реакционной способностью, в которых атомы Si связаны непосредственно друг с другом, и инертные си-локсапы, в которых каждая пара атомов Si связана друг с другом через мостиковый атом кислорода. Силок-саны представляют собой химически инертные, теплостойкие масла и кау-чуки, обладающие диэлектрическими свойствами и используемые в качестве Рис. 21-7. <a href="/info/1680165">Кремний образует</a> <a href="/info/56634">полимерные цепи</a> <a href="/info/1696521">двух</a> <a href="/info/1221371">типов силаны</a> с <a href="/info/1444082">высокой реакционной</a> способностью, в которых атомы Si <a href="/info/960277">связаны непосредственно</a> друг с другом, и инертные си-локсапы, в которых каждая пара атомов Si <a href="/info/97381">связана друг</a> с другом через <a href="/info/766656">мостиковый атом</a> кислорода. Силок-саны представляют <a href="/info/1795776">собой</a> <a href="/info/573279">химически инертные</a>, теплостойкие масла и кау-чуки, обладающие <a href="/info/62729">диэлектрическими свойствами</a> и используемые в качестве

    Методами молекулярной масс-спектрометрии устанавливают распределение молекул в соответствии с числом циклов, а также определяют характер связи циклов между собой (например, наличие конденсированных ядер). Для выяснения характера распределения углеводородов по степени их цикличности служит также метод термической диффузии. И, наконец, химические методы исследования, такие, как дегидрирование и изомеризация с последующим дегидрированием, помогают выяснить природу нафтеновых колец, наличие и количество углеводородов с гексамети-леновыми и пентаметиленовыми циклами, а также наличие и количество углеводородов мостикового типа строения. [c.362]

    В связи с высокой пластичностью, термической неустойчивостьк> натуральные и синтетические каучуки не используются непосредственно для технических целей. Для придания каучукам прочностных свойств, эластичности и термостойкости их подвергают обработке серой или ее соединениями (например, хлористой серой S2 I2) — вулканизируют. Процесс вулканизации был открыт в 1839 г. Генкоком и Гудьиром. Это довольно сложный химический и физико-химический процесс, сущность которого заключается в образовании новых поперечных (мостиковых) связей между полимерными цепями (см. с. 407). В результате такой обработки каучук превращается в технический продукт — резину, которая содержит до. 5% серы. Кроме серы в резину входят различные наполнители, пластификаторы, красители, антиоксиданты и др. Вулканизированный каучук, содержащий по массе свыше 30% серы, называется эбонитом. [c.83]

    Стевелс, развивая представления Захариасена, ввел понятие о трех структурных параметрах, которые характеризуют строение стекла X — среднее число немостиковых ионов кислорода, приходящихся на один тетраэдр (химически связаны только с одним сет-кообразующг м атомом) У — среднее число мостиковых ионов кислорода на один тетраэдр (химически связаны с двумя сеткообразующими атомами) Я — среднее количество ионов кислорода на один сеткообразующий катион. Эти параметры связаны соотношениями А +У=4 Л +1/2У=/ , откуда Х=2Я—4 и У=8-2/ . [c.196]

    Бериллий, магний, алюминий и некоторые другие элементы третьей группы, первой и второй побочных подгрупп образуют полимерные гидриды (BeH2)i, (А1Нз)у,. .. Образование полимеров осуществляется за счет химических связей с участием мостикового (например, Ве-Н--Ве) атома водорода. Эти гидриды разлагаются на простые вещества при небольшом нагревании. [c.344]

    Мостиковая роль донорного атома в рамках упрощенных моделей химической связи, например концепции Льюиса, хорошо интерпретируется только в том случае, если этот атом имеет несколько донорных электронных пар, каждая из которых используется на образовании двуцентровой донорно-акцепторной о-связи [c.134]

    Взаимодействие между ионами металлов может привести в принципе к возникновению только несвязывающих или разрыхляющих МО. При этом. молекула сохраняет устойчивость за счет мостиковых лигандов, связывающих ионы металла. Такое альтруистическое взаимодействие М— М, которое может привести к спариванию спинов, но вносит отрицательный или близкий к нулевому вклад в энергию связи, трудно считать химической связью. Вообще при наличии мостиковых лигандов вопрос о наличии связи М—М становится довольно сложным. В частности, в структуре монопиридинкупроацетата (см. с. 132) атомы Си удалены друг от друга на 0,263 нм, что всего на 0,010 им больше, чем в металле. Имеется обменное взаимодействие между ионами u +, проявляющееся в магнитных свойствах соединения, однако расчет показывает, что оно осуществляется через цепочку Си—О—С—О—Си перекрывание /-орбиталей ионов Си + несущественно, связь Си—Си отсутствует. [c.140]

    Несмотря на многочисленные попытки, до сих пор не удалось получить аннулен 49. Однако известны различные способы, позволяющие избежать перекрывания между двумя внутренними протонами. Наиболее успешный подход основан на построении мостика, связывающего положения 1 и 6 [155]. Были получены 1,6-метано Ю]аннулен (74) [156], а также его кислородный и азотный аналоги (75 [157] и 76 [158]) это устойчивые диатроп-ные соединения, вступающие в реакции ароматического замещения [159]. Химические сдвиги периферических протонов в 74 лежат в области от 6,9 до 7,36, а мостиковых протонов — при —0,56. Исследование кристаллической структуры 74 показало, что периметр молекулы не лежит в одной плоскости, но длины связей составляют от 1,37 до 1,42 А [160]. Построение мостика между положениями 1 и 5 также приводит к ароматической системе. Например, мостиковые протоны в соединении 77 дают сигналы при —0,34 и —0,206 161]. Таким образом, многочисленные данные показывают, что замкнутое кольцо из десяти электронов представляет ароматическую систему, однако в некоторых случаях копланарность молекулы настолько нарушена, что она не может быть ароматической. [c.85]

    Физические и химические свойства бора. Наиболее устойчивой кристаллической формой бора является / -ромбоэдрическая. Существ вуют также -ромбоэдрическая и тетрагональная модификации бора. Все эти кристаллические структуры слагаются из икосаэдров (см. рис. 121). Каждый из атомов бора внутри икосаэдра связан с пятью соседями, а атомы в вершинах осуществляют сочленение икосаэдров друг с другом непосредственно или через промежуточные атомы бора. На рис. 136 представлен фрагмент кристаллохимического строения ромбоэдрического бора, в котором икосаэдры связаны между собой мостиковыми атомами бора. В целом кристаллохимия бора необычна и характеризует его как переходный элемент между металлами и неметал.лами. [c.326]

    Вместе с тем, несомненно, что в реальной молекуле фуранового вещества все эти структурные элементы ядра находятся в известном взаимодействии, что должно сказываться на характере соответствующих реакций взаимное влияние должно иметь место и между ядром и замещающими группами. В действительности реакции фуранового ядра, как это будет показано ниже, обнаруживают в достаточно отчетливой степени указанную вьппе аналогию с диеновыми углеводородами и дивиниловым эфиром. В то же время химическое поведение фурановых веществ свидетельствует о том, что замыкание бутадиена в цикл через мостиковый кислород или, иначе говоря, соединение простой связью обоих Р-углеродных атомов дивинилового эфира, приводит к возникновению качественно новых свойств, присущих фурану как химической индивидуальности, которые в известной мере отличают фуран и все его производные от указанных выше структурно близких ненасыщенных соединений жирного и алицик-лического рядов. Эти специфические особенности фурановых веществ могут быть обнаружены при рассмотрении только тех химических реакций, Которые обусловлены самим фурановым ядром, а не замещающими функциональными группами. [c.7]

    Белый, рентгеноаморфный, при прокаливании разлагается. Из холодного раствора осаждается гидрат TiOj nHjO, после высушивания образуется TiO(OH)i. Свежеосажденный TiOj HiO химически активен и легко пептизируется. При продолжительном кипячении водной суспензии образуется TiO(OH>2 вследствие оляции (образование мостиковых связей [Ti—(ОН)—Ti]) и оксоляции (образование связей [Т —О—Ti]), это старение осадка снижает химическую активность. Не реагирует с водой, щелочами, гидратом аммиака Реагирует с концентрированными кислотами, пероксидом водорода (качественное обнаружение). Получение см. 706 , 710  [c.353]

    Атомы бора и азота обобщают свободную электронную пару, образуя семиполярную связь. Гидриды и триалкилы бора практически не существуют в виде мономеров, так как имеют большой избыток неиспользованного химического сродства, т. е. внутренней энергии, которая может быть выделена в виде свободной энергии ДС. Поэтому самый простой гидрид бора ВНз (бо-ран) образует димер — диборан ВгНб с мостиковыми атомами водорода, -Н.  [c.580]

    Гексаалкилдибораны образуют трехцентровые делокализованные а-связи, в которых электронная пара мостикового СН3 обслуживает сразу две химические связи с атомами бора, т. е. по существу является одноэлектронной. [c.580]


Смотреть страницы где упоминается термин Связь химическая мостиковая: [c.236]    [c.168]    [c.228]    [c.112]    [c.277]    [c.21]    [c.174]    [c.146]    [c.192]    [c.142]    [c.461]    [c.86]    [c.273]    [c.293]    [c.162]    [c.134]    [c.132]    [c.108]    [c.961]    [c.106]    [c.101]    [c.353]    [c.605]    [c.97]    [c.6]   
Валентность и строение молекул (1979) -- [ c.340 ]




ПОИСК





Смотрите так же термины и статьи:

Химическая связь

Химическая связь связь

Химический связь Связь химическая



© 2024 chem21.info Реклама на сайте