Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Инертные газы защитная среда

    Для защиты от газовой коррозии используют в основном жаростойкие сплавы. Так, например, чтобы уменьшить скорость окисления углеродистой стали при 900 °С в три раза, достаточно ввести в нее 3,5 % алюминия в четыре раза — 5,5 % алюминия. Кроме жаростойкого легирования используется метод, заключающийся в применении защитных атмосфер. Газовая среда не должна содержать окислителей, находящихся в контакте со сталью, и восстановителей в контакте с медью. В качестве защитной атмосферы при термической обработке и сварке применяют инертные газы — аргон и азот. Также можно осуществлять термическую обработку сталей в атмосфере, содержащей азот, водород и оксид углерода. Сварка титановых и алюминиевомагниевых сплавов должна осуществляться в защитной среде аргона. [c.52]


    Защита от коррозии имеет чрезвычайно большое значение. Ежегодные потери от коррозии составляют 10—12% от общего количества добываемых металлов. Среди методов защиты распространено создание на поверхности металлических предметов защитных слоев (покрытия лаками, красками, слоями других металлов, оксидирование, фосфатирование), специальная обработка окружающей среды (ввод ингибиторов коррозии, продувка инертным газом) и др. Остановимся лишь на некоторых вопросах электрохимической защиты от коррозии. [c.337]

    Для предупреждения подобных аварий следует принимать меры по обогреву импульсных линий, приборов и других средств контроля и управления процессами. Электрические приборы и средства автоматизации общепромышленного исполнения должны устанавливаться в отапливаемых изолированных от взрывоопасных сред помещениях. Такие приборы должны размещаться внутри герметичных шкафов, продуваемых воздухом или инертным газом под избыточным давлением в соответствии с требованиями ПУЭ с выбросом газов в атмосферу. Приборы и средства автоматизации, размещаемые вне помещения, должны при необходимости обогреваться и защищаться от атмосферных влияний. Импульсные линии, связывающие разделительные сосуды с приборами и средствами автоматизации, должны быть заполнены инертной, незастывающей и незамерзающей жидкостью, которая не растворяет измеряемый продукт и не смешивается с ним. Импульсные трубки и защитные трубы должны вводиться и выводиться через наружные стены. [c.316]

    Другой метод борьбы с газовой коррозией состоит в использовании защитной атмосферы. Газовая среда не должна содержать окислителей в контакте со сталью и восстановителей в контакте с медью. В качестве защитной атмосферы при термообработке и сварке применяют инертные газы азот и аргон. Разогрев стали осуществляют в атмосфере, содержащей азот, водород и окись углерода. Сварка алюминиево-магниевых и титановых деталей должна производиться в атмосфере аргона. [c.14]

    Области применения гелия весьма разнообразны. Поскольку гелий очень легок (легче его только водород), он применяется для заполнения дирижаблей, аэростатов, наблюдательных и метеорологических шаров. Гелий используется для создания инертной газовой защитной среды вокруг свариваемого и расплавляемого металла при сварке алюминия, меди, титана, магния, нержавеющей стали и других металлов, что исключает необходимость добавки флюсов применяется как газ-носитель в хроматографических газоанализаторах совместно с кислородом используется для приготовления дыхательных смесей при лечении астмы и других заболеваний дыхательных путей, а также для получения искусственной атмосферы при кессонных и водолазных работах. [c.133]


    В связи с наличием взрывоопасных и особенно пирофорных сред, обращающихся в технологическом оборудовании, чрезвычайно важное значение приобретает изоляция этих сред от кислорода и воды с использованием азота. Системы азотного дыхания аппаратуры, аварийной защиты, продувки инертным газом должны быть весьма эффективными. Производство должно иметь постоянный источник инертного газа абсолютной надежности. При этом необходимо исключать возможность загрязнения защитного азота кислородом, парами воды сверх допустимых пределов. [c.118]

    Особенности изменения структуры катализатора на промышленных установках связаны с двойственным влиянием образующегося кокса. Он замедляет спекание при нагреве катализатора в среде инертных газов и водяного пара. При выжиге кокса спекание ускоряется. Это связано с перегревом в процессе регенерации частиц катализатора, по сравнению с температурой газового потока, на 150—200 °С. Перегреваются также отдельные участки частичек катализатора. Перегревы и защитное действие оставшегося кокса приводят к быстрому и неравномерному спеканию частиц по глубине. [c.93]

    Выгрузка катализаторов из простых аппаратов создает несколько проблем, если катализатор не может быть использован вторично. Сначала катализатор необходимо охладить до температуры менее 50° С, предпочтительно до температуры окружающей среды. Если есть нижний разгрузочный люк, то потребуется лоток, чтобы направить катализатор из аппарата в барабаны или в самосвал или чтобы просто распределить его по земле. Некоторые катализаторы — такие, как для высокотемпературной или низкотемпературной конверсии СО, кобальт-молибденовый и катализаторы синтеза аммиака — являются пирофорными в восстановленном состоянии, поэтому при выгрузке их необходима осторожность. Внутри аппарата катализатор должен находиться в атмосфере инертного газа и при выгрузке необходимо его собрать в металлический контейнер, расположенный на земле, и хранить вдали от воспламеняющихся веществ. Если выгружаемый катализатор начинает нагреваться, то его можно обрызгать струей воды. Другим техническим приемом является выгрузка катализатора в барабаны или металлический трейлер (прицеп), содержащий несколько кусков твердой углекислоты, которая, испаряясь, обеспечивает получение защитного газа. В некоторых случаях катализатор перед выгрузкой может пропитываться водой. Вода способствует охлаждению и также замедляет окисление катализатора. Но если в слое присутствует мелочь, это может вызвать загрязнение аппарата и затруднить выгрузку. [c.212]

    При плавке в вакууме существенно облегчаются процессы дегазации переплавляемых металлов, очистки их от неметаллических включений и т. д. Таким образом, вакуум используется здесь и как защитная среда, и как технологический фактор. По указанным причинам плавка высокореакционных и тугоплавких металлов в инертных газах применяется только в тех случаях, когда в состав выплавляемых сплавов входят такие металлы, как марганец, имеющие при температуре плавления высокую упругость паров. Последнее приводит к необходимости иметь в печи остаточное давление порядка 10 мм рт. ст., что, в частности, существенно сказывается на характеристиках дуги. [c.180]

    Из дуговых способов сварки титана самый распространенный — сварка неплавящимся вольфрамовым электродом в среде инертных газов. Качество сварки зависит главным образом от надежности защиты зоны сварки и чистоты инертного газа. Для получения качественного шва необходимо, чтобы содержание влаги в защитном газе (аргоне) было минимальным, так как под действием высоких температур она диссоциируется и образующиеся водород и кислород энергично поглощаются расплавленным металлом. Применяют аргон I сорта с точкой росы не выше —45 °С [8]. [c.22]

    В химическом оборудовании применяют торцовые уплотнения. Они отличаются высокой герметичностью, малым трением и большой долговечностью. Эти уплотнения предназначены для герметизации вращающихся валов и в зависимости от конструкции могут работать при избыточном давлении до 7 МПа или остаточном давлении до 0,66 кПа, температуре среды от —75 до +400 °С и окружной скорости до 50 м/с возможно использование защитной среды — инертного газа. Их применяют Для уплотнения валов при работе на парогазовых, жидких, абразивных, взрыво- и пожароопасных, полимери-зующихся и токсичных средах. Недостаток торцовых уплотнений — сложность конструкции, значительные материалоемкость и габариты, высокая стоимость. [c.134]

    При сварке в атмосфере инертного газа (аргоно-дуговая или гелио-дуговая сварка) тепловая энергия создается дугой постоянного или переменного тока, горящей между свариваемым материалом и нерасходуемым вольфрамовым электродом. Дуга горит в защитной среде аргона или гелия. Небольшие сварочные аппараты постоянного тока работают при напряжении 45—75 в и токе 15—175 а, а большие аппараты — при токе до 300 а. В аппаратах переменного тока используется напряжение около 100 в при токе 250—300 а, но иногда (например, при сварке алюминия) на сварочный ток накладывается низковольтный высокочастотный ток, позволяющий создавать дугу большей длины. [c.44]


    Стандартными методами подготовки образцов металлов без защитных пленок к испытаниям являются очистка их поверхности абразивным материалом и обезжиривание. Химическая очистка поверхности не рекомендуется. При оценке коррозионной стойкости образцов с предварительно сформированными защитными пленками такая методика недопустима. В этом случае образцы с пленками промывают струей дистиллированной воды и высушивают в вакуумном эксикаторе с осушителем или в среде инертного газа при комнатной температуре. Необходимо до минимума сократить контакт образцов с пленками с возд -хом, а также их нагрев во избежание возможного. модифицирования защитной пленки. [c.34]

    Защитную инертную среду во время работы во всех аппаратах и дистилляторе во время его остановки создают указанным инертным газом. [c.247]

    Химические свойства металлов при температуре сварки определяют те газы, контакт металла с которыми в процессе сварки допустим. Легкоокисляющиеся металлы нельзя сваривать на воздухе, сварка должна производиться в защитной среде (водород, аргон, гелий), но если металлы чувствительны к воздействию водорода (например, медь), то в этом случае для защиты могут использоваться только инертные газы. [c.48]

    Технические и редкие газы используют в производстве полупроводниковых приборов для создания защитной инертной и активной сред, криогенных температур, в качестве газов-носителей. [c.133]

    Аргон широко используется в металлургических и химических процессах, требующих по условиям их технологии инертной среды. Широко распространен способ электросварки (а также наплавки и резки) металлов в защитной атмосфере инертного газа — обычно аргона (аргоно-дуговая сварка титановых, алюминиевых, магниевых и других сплавов, меди, вольфрама, нержавеющих сталей и т. д.). Чистые гелий и аргон — непревзойденные защитные газы при работе с химически малоустойчивыми веществами, легко поддающимися окислению. [c.499]

    Склонность тугоплавких металлов и сплавов к взаимодействию с газами снижает их пластические свойства, затрудняет деформацию и значительно понижает процент выхода годного металла. Например, при нагреве ниобия в среде аргона при 1400—1600° С и деформации на воздухе глубина окисленного слоя составляет 3 мм. Этот слой необходимо удалять механической обработкой. Молибден и вольфрам в аналогичных условиях окисляются на глубину до 1 мм, а при температурах выще 1000° С интенсивно образуют летучие окислы, приводящие к потере металла и ухудшению санитарных условий труда. Поэтому нагрев, обработку давлением и охлаждение заготовок следует проводить в защитных или нейтральных атмосферах и вакууме. Один из способов защиты заключается в нагреве и охлаждении заготовок в среде нейтральных и инертных газов. Например, для защиты молибдена и вольфрама применяется водород, а ниобия и тантала — аргон или гелий. Защита металлов и сплавов от окисления может обеспечиваться также применением оболочек, нагревом заготовок в расплаве стекла, применением защитных покрытий в виде эмалей. Однако эти способы решают задачу только частично. [c.242]

    Более тщательная защита достигается при сварке в камерах с защитной средой в камерах, оснащенных резиновыми рукавами-перчатками, можно выполнять ручную сварку. Для устранения натекания воздуха камеры объемом до 0,2 следует заполнять инертным газом в течение 15—20 сек и объемом 1—1,5 м за 1—2 мин. [c.272]

    Гафний. Сварку гафния Производят в среде инертных газов с использованием вакуумированной камеры поверхностное натяжение расплавленного гафния высокое, и при недостаточном нагреве возникают несплавления. По опытным данным прочность сварных швов превышает прочность основного металла на коррозионную стойкость сварных соединений небольшие примеси азота при сварке в защитных средах мало влияют [1, 4]. [c.278]

    Для сварки дугой прямого действия плавящимся электродом в защитней среде углекислого газа и неплавящимся электродом в защитной среде инертного газа применяют соответственно углекислый газ и аргон. [c.77]

    При электродуговой сварке в среде защитного газа в сварочную дугу под небольшим давлением (250—800 мм вод. ст.) подается инертный газ, который отделяет расплавленный металл от атмосферного воздуха. В качестве защитных газов используют водород, углекислоту и аргон. Основными преимуществами электродуговой сварки в среде защитного газа являются отсутствие обмазок и флюсов, усложняющих процесс сварки, возможность механизации и автоматизации работы при сварке в различных пространственных положениях с помощью простых приспособлений, высокое качество сварных соединений. [c.196]

    Метод восстановления деталей наплавкой применяется для стальных, чугунных, бронзовых, свинцовых деталей, а также для баббитовых вкладышей подшипников скольжения. Наплавка деталей из цветных металлов представляет большие трудности, поскольку эти металлы интенсивно окисляются. Однако при использовании защитной среды (флюсы, инертные газы) возможна наплавка деталей и из цветных металлов. Например, алюминиевые детали наплавляют электродуговым способом и газовой сваркой при использовании в качестве присадочного материала стержней того же состава, что и металл наплавляемой детали. Алюминиевые поршни компрессоров наплавляьэт алюминием с применением ручной аргонодуговой сварки. [c.86]

    Инертные газы используются не только для флегма-тизации технологических процессов со взрывоопасными средами, их применение на химических заводах весьма широко, особенно азота. Во взрывоопасных производствах азот используется для продувки аппаратов и коммуникаций перед пуском, чтобы освободить систему от воздуха, а после остановки — для освобождения ее от взрывоопасных смесей. Азотом перёдавливают легковоспламеняющиеся жидкости, им заполняют свободные пространства емкостей с летучими или легкоокисляю-щимися жидкостями, например ацетальдегидом, этиловым эфиром, изопропиловым спиртом, защищают от искр статического электричества замкнутые простра нст-ва аппаратов. Содержание кислорода в азоте не должно превышать определенной нормы, иначе его защитное действие снижается или вовсе прекращается, например в производствах, где применяют или получают перекис-ные и металлоорганические соединения, азот не должен [c.144]

    Испытания, результаты которых представлены в табл. 20 и 21, проводили в статических условиях при комнатной температуре. Коррозионной средой служила модельная среда NA E (стандарт Национальной ассоциации инженеров-коррозиони-стов США), то есть 5%-й водный раствор Na l, насыщенный сероводородом до исходной концентрации (около 3,0 г/л) и подкисленный уксусной кислотой до pH 3,0-3,5 [51]. Защитную эффективность ингибиторов от общей сероводородной коррозии оценивали в стеклянных коррозионных ячейках емкостью 1000 мл (в жидкой фазе) и 3000 мл (в парогазовой фазе). В первом случае ячейку наполняли жидкостью примерно на 95% без предварительной продувки инертным газом в целях [c.233]

    Технология углеродных волокон включает окисление исходного химического волокна для стабилизации его свойств, карбонизацию в защитной атмосфере и последующую термообработку вплоть до графитации [132]. Промышленная установка для получения углеродных тканей с заданным электросопротивлением представляет собой электропечь с помещенной в нее реакционной камерой из нержавеющей стали [9, с. 206—210]. Общая длина реакционной зоны составляет 2,5—3 м. В установке обеспечивается длительная изотермическая выдержка ткаяых материалов в инертной среде при 600—900 °С. Это осуществляется непрерывной протяжкой обрабатываемой ткани через камеру со скоростью 0,2-12 м/ч. Предварительный подогрев подаваемого в печь инертного газа (азот, аргон) при избыточном давлении до 100 Па исключает охлаждение отдельных участков ткани. За один цикл получается примерно 300-350 м ткани в течение 10-15 сут в зависимости от требуемого режима. [c.233]

    Герметичные электроприводы применяют для перемешивания высокотоксичных, высокоагрессивных или пожароопасных сред. В конструкции этого привода активные элементы ротора и статора электродвигателя заш,ищены от воздействия среды специальной изоляцией ( мокрый статор ) или защитными гильзами ( сухой статор ). В аппарате с газозаполненным герметичным электроприводом по ОСТ 26-01-1422—81 (рис. 9.15) ротор 6 вращается в газовой полости на подшипниках качения 4 и 8. Статор 7 защищен от контакта с парами среды тонкостенной защитной гильзой 5 такая гильза может быть установлена и на роторе. Подшипники качения работают в газовой среде, которая через штуцер 10 подается в замкнутую полость. В качестве газа, препятствующего контакту перемешиваемой среды с подшипниками качения, используют либо инертный газ, либо один из компонентов реакционной среды. Жидкий смазочный материал подается к подшипникам через штуцер 9. Перемешивающее устройство (винтовая мешалка) 1 установлено в нижней части вала 3. Внутри аппарата расположена циркуляционная труба 2. [c.273]

    О2 и СО2 достигается нагревом воды при пониж. давлении или продувкой инертным газом, химическое-пропусканием через слой железных или стальных стружек, обработкой восстановителем (сульфатом натрия, гидразином). В энергетике и нек-рых отраслях техники воду освобождают также от стимуляторов локальной коррозии, напр, хлоридов. Эффективно снижают агрессивность водных сред небольшие добавки (релко более 1%) ингибиторов коррозии, защитное действие к-рых обусловлено образованием прочно связанных с пов-стью нерастворимых продуктов коррозии. Обычно применяют анодные ингибиторы гидроксид, карбонат, силикат, борат, фосфаты, нитрит и бензоат натрия и катодные (сульфаты цинка, бикарбонат натрия и нек-рые др.). Анодные ингибиторы в недостаточной концентрации вызывают питтинговую коррозию. Они более эффективны в смеси с катодными ингибиторами, причем совместное действие часто превосходит сум.му отдельных эффектов. В кислых средах используют специфические, гл, обр. орг. ингибиторы. Особый класс составляют ингибнторы-пассиваторы, переводящие металл в пассивное состояние посредством смещения его электродного потенциала в более положит, область. Это окислители, чаще пероксидного типа, а также соед. благородных металлов, обменное осаждение к-рых на защищаемом металле способствует достижению потенциала пассивации. [c.165]

    Спекание, как правило, проводят в защитной (чаще всего инертные газы) или восстановительной (водород, углеводо-родсодержапще газы) средах, а также в вакууме. Нагрев изделий осуществляют в электропечах (вакуумных, колпако-вых, муфельных, толкательных, конвейерных, проходных, шахтных, с шагающим подом и др.), индукц. печах, прямым пропусканием тока. Спекание и прессование м. б. совмещены в одном процессе (спекание под давлением, горячее прессование). [c.75]

    В присутствии кислорода углерод сгорает, преиращаяс1. в диок< СИД и оксид углерода. 11ри этом выход углеродных волокон снижается, поэтому очень важно пе допустить сгорания углерода и следить за средой, в которой проходит пиролиз. Обычно его проводят Б защитной среде (инертные газы, продукт . распада цел-> люлозы, угольная засыпка и др.). [c.431]

    Газ для создания защитной атмосферы выбирают в зависимости от металлов, входящих в состав сплава. Часто применяют водород, однако не в тех случаях, когда присутствуют значительные количества щелочных, щелочноземельных и редкоземельных металлов, легко образующих гидриды. Применяют для этой цели и азот, за исключением тех случаев, когда среди металлов-присутствуют такие, которые образуют нитриды, как, например, литий, бериллий, магний, кальций, стронций, барий, редкоземельные металлы, актиноиды,, титан, цирконий, гафний, ванадий, ниобий и тантал. Если нет основания опасаться образования карбидов, то можно с успехом использовать и моноксид углерода, тогда как Oj и SOj при высоких температурах могут иногда оказывать на металлы окислительное действие. Инертные газы, преимущественно аргон, являются наилучшими, хотя и наиболее дорогими защитными газами. Защитный газ при высоких требованиях к его защитному действию должен быть хорошо очнщен, в особенности нежелательно присутствие в нем кислорода, даже в виде следов. Указания о способах очистки различных газов можио найти в соответствующих разделах настоящей книги [водород (гл. 1), азог (гл. 7), инертные газы]. Водород, азот и аргон высокой степени чистоты имеются в продаже или могут быть поставлены некоторыми заводами по желанию заказчика. [c.2147]

    Горячую деформацию рения проводят в вакууме или среде инертных газов, так как на воздухе возникает красноломкость, связанная с высокой окисляемостью реиия и образованием легкоплавкой эвтектики Ке—ЕегОг (/пл = 297°С). Горячая прокатка в вакууме проводится при 1350 50°С. Наряду с прокаткой рения в вакууме его можно прокатывать в защитных оболочках из стали, никеля илн молибдена. [c.459]

    Из других видов сварки следует отметить получившую распространение в последнее время дуговую сварку вольфрамовым электродом в защитном газе (аргоне) и применяемую в производстве изделий новой техники. Вольфрамовый электрод при нагревании энергично окисляется, поэтому сварку ведут в защитной среде, не содержащей кислорода. Возможно непрерывное вдувание в дугу инертного газа, в качестве которого используются аргон, гелий или водород, либо смеси этих газов. Наиболее часто используется аргон как наиболее дешевый. Дуга постоянного тока в аргоне при прямой полярности (минус на электроде) горит устойчиво и легко зал игается. Напряжение горения дуги составляет около 15 В, нагрев и расход электрода незначительны. Эта картина резко меняется при изменении полярности. При этом возникает катодное расаыление, приводящее к тому, что с поверхности основ юго металла в зоне сварки удаляются окислы и загрязнения. Очищающее действие дуги позволяет без применения флюсов сваривать спец-стали, алюминий, магний, различные легкие сплавы, тугоплавкие металлы, активные металлы с большим сродством к кислороду, а также металлы малых толщин. Для питания дуги используются обычные агрегаты постоянного тока и выпрямители для дуговой сварки. В некоторых случаях желательно применение дополнительных осцилляторов и специальных электродов с добавкой окиси тория или лантана (торированные или лантанированные электроды) с целью облегчения зажигания и повышения устойчивости дуги. [c.154]

    Стремление использовать свойства и возможности сверхчистых материалов — одна из тенденций современной техники. Для сверхчистоты нужны инертные защитные среды, разумеется, тоже чистые аргон — самый дешевый и доступный из благородных газов. Поэтому его производство и потребление росло, растет и будет расти. [c.286]


Смотреть страницы где упоминается термин Инертные газы защитная среда : [c.85]    [c.211]    [c.211]    [c.805]    [c.187]    [c.340]    [c.508]    [c.679]    [c.433]   
Термо-жаростойкие и негорючие волокна (1978) -- [ c.283 , c.285 ]




ПОИСК





Смотрите так же термины и статьи:

Газы инертные

Инертный газ



© 2025 chem21.info Реклама на сайте