Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Зависимость Rf некоторых катионов от природы аниона

    Зависимость некоторых катионов от природы аниона . Системы для хроматографического разделения смесей ионов. . Окраска зон неорганических катионов при проявлении некоторыми [c.5]

    Зависимость некоторых катионов от природы аниона [c.125]

    Благодаря этому оба типа ионных процессов, несмотря па противоположный заряд растущих цепей, имеют общие черты. Это проявляется в существенном влиянии полярности среды на кинетику полимеризации и в зависимости скорости элементарных стадий процесса и микроструктуры полимера от природы противоиона. Известная аналогия между катионной и анионной полимеризацией имеется и в другом отношении, а именно, в возможности полного исключения реакций обрыва, что в свою очередь приводит к близости кинетики процесса в определенных системах анионного и катионного характера. Б то же время различие в заряде активных центров обусловливает избирательную способность многих мономеров полимеризоваться только по одному из двух ионных механизмов. Склонность к анионной полимеризации типична для мономеров ряда СН2=СНХ, содержащих заместители X, понижающие электронную плотность у двойной связи, например КОз, СК, СООК, СН=СН2. В наибольшей степени к анионной полимеризации способны мономеры, содержащие два подобных заместителя, например СН2=С(СК)2 или СН2=С(М02)з. Анионная полимеризация возможна также для насыщенных карбонильных производных и для ряда циклических соединений — окисей, лактонов и др. Инициаторами анионной полимеризации являются щелочные металлы, некоторые их органические и неорганические производные (металлалкилы, алкоксиды, амиды и др.), а также аналогичные соединения металлов II группы. Заключение об анионной природе активных центров основывается не только на качественных соображениях, но и на количественном анализе экспериментальных данных с помощью правила Гаммета. Это правило связывает значения констант скоростей реакци производных бензола с характеристиками их заместителей. Оно формулируется в виде уравнения [c.336]


    Крайне устойчивые, легко выделяющиеся из водного раствора гексааммиакаты, которые почти не изменяются даже при воздействии концентрированных сильных кислот, образуют ионы Со , Сг , Rh +, Ir " ", Ru +, Pd +, Pt + высокой устойчивостью отличаются также тетрааммиакаты Аи +, Pd + и Pt +. Большинство из них относится к комплексам внедрения, ио некоторые менее устойчивые, например 12п(ННз)в] +, [Сс1(МНз)в] , u(NH3)4l +, вероятно, также относятся к этому классу. Многие другие аммиакаты, такие, как [Ь1(МНз)з]+, [Ре(ЫНз)в] , следует считать нормальными комплексами. Простого всегда воспроизводящегося соотношения между величиной и природой центрального катиона или аниона и устойчивостью комплекса не существует однако можно установить правило стабильности, которое выполнимо в известных границах. В соответствии с этим правилом, например, в комплексное соединение включается тем больше молекул NH3, чем больше анион [136, 137]. Некоторые интересные закономерности относятся к зависимости средней свободной энергии комплексообразования от вида лиганда [138]. [c.269]

    В табл. 20.6 и 20.7 приведены характеристики собственных п ос поглощения в электронных спектрах некоторых неорганических ионов и хромофоров. Положение и интенсивность этих полос могут несколько изменяться, в зависимости от природы растворителя и окружения — катионов в случае неорганических анионов, атомных групп, связанных с хромофорами в молекулах органических соединений. [c.526]

    Между эквивалентной и удельной электропроводностью и концентрацией существует сложная зависимость. Эквивалентная электропроводность при бесконечно большом разбавлении (т. е. когда концентрация становится бесконечно малой) стремится к некоторому постоянному значению, зависит только от температуры и природы электролита и называется предельной электропроводностью (Л ). Предельная электропроводность равна сумме подвижностей катиона и и аниона о, входящих Б состав электролита  [c.163]

    При изучении щелочных солей анионных реагентов в присутствии добавок четвертичных аммониевых солей часто наблюдается замедление реакции. Это определяется конкуренцией за катионные центры в переходном состоянии между каталитически активными щелочными катионами и слабо активными или неактивными R4N+ [172]. Иногда отмечается некоторая зависимость каталитической активности катионов от природы инертных анионов, прибавляемых вместе с ними. Этот эффект можно объяснить конкурирующим взаимодействием катиона с инертным анионом и с анионным переходным состоянием [184]. [c.151]


    Чаще всего для измерения вращения плоскости поляризации применяют желтый свет натриевого пламени или натриевой лампы (/. 589 нм для так называемой D-линии, фактически представляющей собой дублет) измеренный угол вращения обозначается в этом случае как [а]о. Оптически активные органические соединения обычно называются право- либо левовращающими, в зависимости от того, в какую сторону вращается плоскость поляризации желтого натриевого света. В случае координационных соединений при указании угла вращения следует также указывать или во всяком случае знать точно длину волны, при которой определялся этот угол, поскольку угол вращения зависит как по абсолютной величине, так и по знаку от длины волны, при которой его измеряют. Если знак (+) или (—) указан без обозначения длины волны, то это всегда относится к желтой линии натрия. Примером обозначения отдельных энантиомеров могут служить (+)-[Со епз] или (—) 5481-[Rh епд] " (где еп— этилендиамин). Следует также иметь в виду, что на величину (а в некоторых случаях и на знак) угла вращения может оказать влияние природа среды так, например, различные явления, связанные с образованием ионных пар [7—10], могут существенно изменить вращательную силу оптически активного катиона. Не исключено, что аналогичные эффекты возникают и в случае оптически активных анионов, хотя до сих пор известен лишь один пример подобного рода [7]. [c.149]

    На основании найденных зависимостей lg[0 np — inp)/inp] pH испр были рассчитаны константы скорости рекомбинации однозарядных анионов бензолполикарбоновых кислот (см. табл. 8) с введением поправки к константам кислотной диссоциации, учитывающей вторичный солевой эффект [4]. Хотя константы скорости по значению толщины реакционного слоя ( 3-10- см) соответствуют объемному процессу, кинетический ток для рассматриваемых процессов значительно зависел от природы катиона фонового электролита даже в области достаточно низкой концентрации катиона, увеличиваясь в направлении Li+< Na+< s+ (рис. 22) [14]. Это не позволяет исключить некоторое влияние на найден ные значения констант скорости гетерогенно (гомогенно) -поверхностного процесса, хотя для подобного, например, гетерогенно-поверхностного процесса  [c.160]

    Гидратация ионов зависит от их природы. Например, катионы щелочных и щелочноземельных элементов, а также анионы хлора, брома, иода и некоторые другие связывают молекулы воды непрочно (обладают, по О. Я. Самойлову, отрицательной гидратацией). Есть мнение, что в зависимости от температуры одни и те же ионы могут обладать как положительной, так и отрицательной гидратацией. [c.11]

    Определение электропроводности позволяет найти только сумму подвижности ионов, составляющих электролит. Между тем в зависимости от природы электролита ток может переноситься в большей или меньшей степени катионами или анионами. В некоторых твердых и расплавленных солях ток переносится только ионами одного знака. Так, в твердом Agi при электролизе двигаются только ионы серебра, а в расплавленном Pb l. — только ионы хлора. Такая анионная проводимость характерна для ряда окислов и фторидов металлов, например для твердого раствора СаО в ZtO - В этом растворе часть катионов Zt за- [c.148]

    Определение электропроводности позволяет найти только сумму подвижностей ионов, составляющих электролит. Между тем в зависимости от природы электролита ток может переноситься в большей или меньшей степени катионами или анионами. В некоторых твердых и расплавленных солях ток переносится только ионами одного знака. Так, в твердом Agi при электролизе двигаются ионы серебра, а в расплавленном РЬСЬ — только ионы хлора. Такая анионная проводимость характерна для ряда оксидов и фторидов металлов, например для твердого раствора СаО в Zr02. В этом растворе часть катионов Zr + замещена катионами кальция с меньшим зарядом. Условие электронейтральности при таком замещении может сохраниться только благодаря образованию в кристаллической решетке твердого раствора кислородных вакансий. Это означает, что часть узлов решетки, которые в чистом ZrOj заполнялись ионами 0 остается пустой. [c.198]

    Вдовенко и Рязанов [169] получили уравнения, описывающие зависимость коэффициентов активности отдельных ионов от состава многокомпонентного раствора на основе гипотезы тройной раствор, в котором имеет место химическое взаимодействие между растворенными компонентами и который,, следовательно, не является простым раствором, можно формально рассматривать как псевдочетверной простой раствор, причем четвертым компонентом (наряду с водой, катионом и анионом) будет соединение, образующееся при взаимодействии компонентов тройного раствора. Используя еще ряд гипотез, авторы [169] приходят к заключению, что произведение суммарной концентрации всех форм, в виде которых данный-электролит присутствует в растворе (формы, отличающиеся различной степенью сольватации, в данном случае рассматриваются как одна форма), на коэффициент активности какой-либо формы является для каждой данной формы универсальной функцией активности растворителя, не зависящей от природы электролита. Авторами [169] также рассмотрены некоторые следствия полученного уравнения, имеющие значения для обоснования применимости функции кислотности Гаммета Яо в качестве меры активности ионов водорода в растворах кислот, а также в методике изучения комплексоо бразования в растворах. [c.34]


    В некоторых случаях в зависимости от условий эксперимента и примененных методов исследования стадию а не удается зафиксировать [1044], хотя разряд многовалентных металлов представляет собой ряд последовательных одноэлектронных стадий [349, ИЗ]. Вопрос о существовании в растворе нейтральных молекул А1С12 в рамках используемых методик неразрешим. Положение анодного потенциала зависит от природы присутствующих в растворе анионов, природа катионов на него практически не влияет. В ТГФ исследованы электроды из амальгамированного алюминия, они ведут себя обратимо, воспроизводимо и могут быть использованы в качестве электродов сравнения. Во многих случаях в этих растворителях наступает анодное пассивирование алюминия, часто с образованием видимых прочных оксидных пленок [161, 1228]. Характер процесса коррозии алюминия и сплавов на его основе в апротонных растворителях электрохимический. Скорость растворения алюминия, определяемая через силу тока растворения [c.112]

    Влияние природы лиганда может быть обусловлено двумя факторами электростатическим и стерическим. Под электростатическим эффектом подразумевается такая ситуация, как, например, в случае системы хром(П1) — тиоцианат-ион, когда первый анион тиоцианата взаимодействует с трехзарядным катионом металла, второй — с двухзарядным и так далее до тех пор, пока при взаимодействии шестого лиганда с двухзарядным анионом отталкивание станет очевидным и значимым. Характер зависимости отношения последовательных констант устойчивости от размера лиганда (стерический эффект) будет определяться тем, больше или меньше размер лиганда, входящего во внутреннюю координационную сферу центрального атома, по сравнению с размером замещаемого лиганда очевидно, что, ели происходит замещение лигандов на более крупные, константы устойчивости вновь образующихся комплексов будут ниже первоначальных и наоборот. В качестве примера очень объемистого лиганда можно привести 6,6 -диметил-2,2 -дипнри-дил((1), К = СНз) многие металлы, взаимодействующие с дипи-ридилом((1), К = Н) с образованием комплексов состава 1 3, с диметилзамещенным лигандом ((I), К = СНз) образуют только комплексы состава 1 1 или 1 2 в некоторых случаях вообще не удается выделить ни одного комплекса, что объясняется стерическими трудностями, возникающими из-за присутствия ме-тильных групп. [c.254]

    В зависимости от природы растворителя и растворенного вещества при радиолизе органических растворов образуются преимущественно электрононейтральные свободные радикалы, анион- и катион-радикалы. В некоторых случаях с большими выходами [c.135]

    Реакция должна иметь нулевой порядок по субстрату отклонения от него будут вызваны конкуренцией между анионом реагента и уходящим анионом за катион катализатора Q+. Такая версия была подтверждена в дальнейшем низким значением энергии активации реакции щелочного элиминирования (35,6 кДж/моль), влиянием скорости перемешивания на скорость реакции, нелинейной зависимостью ее от концентрации катализатора, что говорит о влиянии диффузии на лимитирующую стадию [99]. Необходимость достижения некоторой равновесной концентрации Q+OH- в органической фазе в начале реакции подтверждается наличием индукционного периода. Влияет на лимитирующую стадию и природа ониевой соли. [c.37]

    Химические свойства компонентов, определяемые структурой внешних атомных орбиталей, специфичнее их физических свойств. Весьма распространены, например, химические методики группового концентрирования поливалентных катионов, взаимодействующих с определенными функциональными аналитическими группировками (экстракция, соосаждение, концентрирование на хелатных сорбентах), изова-лентных ионов, образующих комплексы с синтетическими ионитами (ионный обмен), некоторых анионов, реагирующих с материалами твердых электродов с образованием малорастворимых пленок (инверсионная вольтамперометрия). В отличие от химических методов концентрирования такой физический метод, как дистилляция, позволяет концентрировать все летучие (или, наоборот, малолетучие) примеси, центрифугирование основано на различной плотности разделяемых компонентов, фильтрация-на их разном агрегатном состоянии. Благодаря не столь однозначной зависимости физических свойств от химической природы примесей и основы более универсальные физические методы предварительного обогащения дополняют химические методы, давая в руки аналитиков эффективные приемы абсолютного и относительного концентрирования. [c.24]

    Химия анионных а-комплексов была исследована в основном при помощи метода ПМР-спектросконии, поэтому в обзоре следует уделить соответствующее внимание обсуждению тех превращений и свойств, которые наиболее просто исследуются при использовании этого метода. С 1964 г. были опубликованы ПМР-спектры около 200 различных анионных а-комплексов. Некоторые данные по химическим сдвигам соответствующих протонов суммированы в табл. 1, 3, 4, 6—8. Катионы не указываются, так как изменения в химических сдвигах в зависимости от природы катиона незначительны. В обзоре сделана попытка скоррелировать и объяснить эти сдвиги в свете структурных особенностей и распределения заряда в комплексе. Обсуждается картина расщепления комплексов, представляющих особый интерес. В целях сравнения все комплексы разделены на две группы и внутри каждой группы приводятся в порядке уменьшения электроотрицательности атома или атомов, присоединенных к С-1. [c.427]

    Из этих уравнений виден характер зависимости И3 менения свободной энергии, энтропии и энтальпии обменной реакции (1) от диэлектрической проницаемости, обеих фаз, температурных коэффициентов диэлектрической проницаемости, радиусов обменивающихся анионов и радиуса катиона четвертичного аммония. Без. сомнения, это упрощенная модель, в которой предпола--гаются сферические ионы в континууме и пренебре-гаются некоторые существенные факторы. Однако сопоставление результатов, полученных с помощью модели, с экспериментальными может пролить свет на природу других факторов, действующих в процессе распределения. [c.239]

    Мицеллы образуются с помощью ПАВ, которые способны адсорбироваться на разделе фаз и снижать межфазное натяжение. Молекула ПАВ имеет дифильное строение и включает гидрофобную часть и полярную группу. Гидрофобная часть представляет собой углеводородный радикал С Н2 +1, С Н2п-1, С Н2п+1СбН4 и др., включающий от 8 до 18 углеводородных атомов. В зависимости от природы гидрофильной фуппы ПАВ подразделяются на катионные, которые включают первичные, вторичные, третичные амины и четвертичные аммониевые основания, анионные молекулы, содержащие карбоксильные, сульфоэфирные, суль-фофуппы и др., и не ионогенные. Действие ПАВ в водных растворах основано на структурировании молекул воды вокруг неполярных углеводородных радикалов ПАВ, что должно вызывать уменьшение энтропии системы. Поскольку любая система стремится к максимуму энтропии, то при достижении некоторой критической концентрации мицеллообразования (ККМ), молекулы воды и ионы ПАВ начинают образовывать ассоциаты, которые называются мицеллами, согласно определению Мак-Бэна (1913). Образование мицелл в этом случае ведет к освобождению части структурированной воды, что является термодинамически выгодным процессом, ведущим к увеличению энергии системы. Наличие мицелл в растворе определяется по изменению поверхностного натяжения, электропроводности, плотности, вязкости, светорассеяния и т. д. в зависимости от концентрации ПАВ. Величина ККМ зависит от природы ПАВ, длины углеводородного радикала, электролита, pH раствора. Чем длиннее углеводородный радикал и слабее полярная фуппа, тем меньше ККМ [3,4]. [c.348]


Смотреть страницы где упоминается термин Зависимость Rf некоторых катионов от природы аниона: [c.169]    [c.46]    [c.270]    [c.100]    [c.144]    [c.171]    [c.557]    [c.242]    [c.127]    [c.114]    [c.5]   
Смотреть главы в:

Справочник химика Том 4 Издание 2 1965 -> Зависимость Rf некоторых катионов от природы аниона

Справочник химика Изд.2 Том 4 -> Зависимость Rf некоторых катионов от природы аниона




ПОИСК







© 2024 chem21.info Реклама на сайте