Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Битум анализ

    Столь значительный рост производства и потребления битумов, а также повышение требований к их качеству настоятельно требуют более глубокого и всестороннего изучения состава и свойств битумов, влияния параметров технологического режима, кинетики и гидродинамики процессов и природы сырья на эти показатели. Применение новых схем-и средств автоматизации позволит комплексно автоматизировать и интенсифицировать процессы производства битумов. Анализ технико-экономических показателей работы битумных установок определит наиболее рациональный способ их производства. [c.5]


    В табл. 4 приведены основные константы, характеризующие качество окисленных битумов. Анализ данных табл. 4 показывает, что при окислении обоих гудронов можно получить как дорожные, так и строительные битумы. При этом битумы, полученные окислением 51 %-ного остатка, в определенных пределах глубины проникания иглы удовлетворяют требованиям ГОСТ 1544-52 на улучшенные марки БН-Пу и БН-1Пу. Однако следует отметить, что в связи с повышенным содержанием масляных компонентов (около 72%) в этом остатке (температура размягчения 31°) дорожный битум марки БН-1 был получен из него некондиционным но растяжимости при 25° (70 см вместо 100 см). [c.287]

    Предполагая, что закономерности для товарных битумов [11] наблюдаются и у битумов из тяжелых нефтей, возможно повышение температуры размягчения и интервала работоспособности при том же объеме дисперсной фазы, составляющем 0,487—0,613 [12]. Для определения в первом приближении массовой доли дисперсной фазы в битумах из тяжелых нефтей по данным [И] рассчитаны индексы пенетрации для товарных битумов. Анализ данных, представленных на рис. 1.7, в, показывает, что улучшение качеств битумов из тяжелых нефтей можно ожидать с увеличением Ф/С выше 0,6. При этом представление об изменении качеств можно получить, анализируя показатели их свойств в процессе старения. С увеличением времени прогрева (рис. 1.8, а) для [c.31]

    Отмечая, что обнаруженные в [1] закономерности для товарных битумов имеют место и для битумов из тяжелых нефтей, считаем возможным повышение температуры размягчения и интервала работоспособности при том же объеме дисперсной фазы, находящемся в пределах 0,487—0,613 [2]. Для того чтобы в первом приближении определить массовую долю дисперсной фазы в битумах из тяжелых нефтей, по данным [1] рассчитаны индексы пенетрации для товарных битумов. Анализ данных рис. 3 показал, что качество битумов из [c.156]

    Битуминологический анализ, основные методы 6528 Битумы анализ 6576, 7508, 7640 люминесцентная хроматография 825 [c.352]

    МЕТОДЫ АНАЛИЗА СМОЛ И БИТУМОВ Анализ канифоли [c.231]

    Элементарный анализ показывает, что остаточные асфальты, полученные из высокосернистого сырья, содержат много серы. Известно, что многие сернистые соединения нефти нестабильны при температурах получения битума, так что можно ожидать некоторого перемещения атомов серы, но нет никаких оснований считать, что серные соединения перерабатываемого сырья играют прямую роль в тех реакциях, которые происходят. [c.550]


    Шз — количество битума, взятое на анализ, г. [c.399]

    Метод позволяет получать результаты определения группового химического состава битумов, близкие к полученным по описанной выше методике [3]. В то же время для проведения анализа люминесцентным методом требуется меньше исходного материала и длительность анализа несколько меньшая. Для осаждения асфальтенов можно также использовать изооктан. [c.9]

    Колонки с адсорбентом и растворами термостатируют, растворители при этом испаряются. Таким образом, в первой колонке оказывается проба мальтенов, а во второй — битума. Далее растворителями одинакового набора (например, изооктаном, бензолом и смесью бензола и этанола в соотношении 1 1) вымывают соответствующие этим растворителям группы соединений из пробы мальтенов и пробы битума. Поскольку раствор в парафиновом углеводороде в отличие от раствора в ароматическом углеводороде не содержит растворенных асфальтенов, общая площадь пиков, получаемых при разделении мальтенов, меньше общей площади пиков, получаемых при разделении битума, на величину, соответствующую содержанию асфальтенов в анализируемом битуме. При этом нужно учитывать возможное неравенство количеств мальтенов н битума, взятых на хроматографирование. Это может быть сделано сравнением пиков, полученных при элюировании изооктаном [Ъ, 6]. Таким образом, на анализ группового химического состава битумов затрачивается не более 2 ч. Определение проводят, хроматографическим методом, но принцип использования экстрагирования при выделении асфальтенов не нарушается. [c.10]

    Битумы начали широко использовать в промышленности задолго до того, как были разработаны теоретически обоснованные методы анализа и исследования. Это обстоятельство объясняет применение традиционных (условных) методов анализа для оценки так называемых технических свойств. Показатели таких свойств используют для маркировки, а также при решении ряда вопросов производства и применения битумов. Распространенность условных методов анализа объясняется и их простотой, возможностью проводить сопоставление качества получаемой продукции с ранее накопленной информацией. В национальные стандарты включены разные условные характеристики битума и методы их определения, но на практике повсеместно используют несколько, описанных ниже (подробное изложение методов испытания битумов включено в соответствующие стандарты). [c.12]

    Сравнение работы трубчатых реакторов и колонн, т. е. аппаратов, используемых в схемах непрерывного производства окисленных битумов, проводилось неоднократно на основе анализа действующих производств [2, 53, 89—91]. Но поскольку в общих расходных показателях установки трудно выделить долю, приходящуюся на окислительный узел, и поскольку режимы работы окислительных аппаратов, при которых проводилось сравнение, не всегда были оптимальными для каждого аппарата, полученные выводы были неоднозначными. Так, по одним данным, металлоемкость производства битумов в трубчатых реакторах больше, чем в колоннах, в 60 раз 53], по другим — в 1,2 раза [91]. Расход топлива, по одним данным, не зависит от типа окислительного аппарата [89], по другим — выше для трубчатого реактора в 2,5 [2] и в 4 раза [53]. [c.69]

    Энергетические затраты на производство окисленного битума складываются из расхода водяного пара, топлива и электроэнергии. Анализ работы битумных установок отрасли (за исключением установок с блоком вакуумной перегонки, где энергетические затраты на блоки не разделяются) показал, что расходы пара на производство 1 т битумов на разных заводах обычно составляют 15—60 кг у. т., электроэнергии — 3—8 кг. у. т. и топлива — до 28 кг. у. т. Таким образом, основной расходной статьей энергетических затрат является пар [183]. [c.122]

    Количественный групповой анализ ГАС ряда типов (сульфидов, тиофенов, простых эфиров, фуранов, пиридинов) затруднен из-за отсутствия в их спектрах полос, пригодных для использования в качестве аналитических. При изучении тяжелых фракций нефтей и битумов методами ИК спектроскопии возникают дополнительные трудности в связи с теж, что некоторые типы функциональных групп (фенольные, карбонильные, сульфоксидные), присутствуя в составе высокомолекулярных, соединений нефти, поглощают при меньших частотах, чем в составе чистых модельных соединений. Этот эффект связывают с более интенсивными меж-молекулярными взаимодействиями и ассоциацией молекул ВМС, содержащих повышенное количество этих функциональных групп [129, 131, 230]. [c.29]

    Из анализа системы уравнений (У,20) следует, что для битума и кокса существует единственный вариант технологического процесса, для дизельного топлива и авиакеросина — (2 — 1)=3 варианта, а для бензина —22 >Ю вариантов получения его из нефти. [c.210]

    Для определения плотности применяют пикнометры типов ПЖ 1, ПЖ-2, ПЖ-3, ПЖ-4 и ПТ. Анализ осуществи м для любых нефтепродуктов, включая твердые битумы. Метод незаменим в тех случаях, когда имеется небольшое количество исследуемого вещества. [c.26]


    Битумы А различных торфов обладают довольно разнообразным химическим составом. Они содержат в различных количественных соотношениях смолы, воски, жирные кислоты, спирты, эфиры, углеводороды, асфальтены и др. При обычном техническом анализе битумов чаще всего определяют только две группы веществ— воски и смолы, так как это имеет важное значение для их практического использования. В битумах низинных торфов больше восков, а в битумах верховых торфов больше смол [3, с. 182]. Ниже представлен химический состав битумов А из верхового (I) и низинного (И) торфа, %  [c.152]

    Уилер [42] разработал рациональный анализ разделения каменных углей на битумы и гуминовые вещества, особенно широко использующийся в Англии и США. Для этой цели угли обрабатывают в течение 200 ч кипящим пиридином при 115°С. Растворимая в пиридине часть, по мнению Уилера, представляет смесь Р- и у-фракций битумов. При последовательном действии селективных растворителей, таких, как хлороформ, петролейный эфир, этиловый спирт и ацетон, можно получить отдельно р-фракцию и У1"> 72-. Уз- и у4-фракции. Нерастворимые в пиридине вещества, на- [c.158]

    Разделение органической массы углей, которая представляет собой сложную смесь самых различных соединений, на отдельные группы веществ, каждая из которых обладает общими свойствами в отношении действия органических растворителей, щелочей, минеральных кислот и других химических реактивов, называется групповым анализом. Предложено много методов группового анализа различных видов твердого топлива. Наиболее целесообразными для группового анализа торфа являются следующие обработки а) последовательное экстрагирование битумов в аппарате Сокслета эфиром и бензолом б) обработка водой при 60 °С с целью выделения простых сахаров в) обработка кипящей водой с целью гидролиза пектиновых веществ г) обработка на водяной бане 2%-ной соляной кислотой с целью гидролиза гемицеллюлозы д) обработка 2%-ным едким натром на водяной бане для экстракции гуминовых кислот е) обработка 80%-ной серной кислотой с целью гидролиза целлюлозы и ее определение по количеству образовавшейся глюкозы, причем остаток принимается за лигнин. [c.161]

    Подобные методики предложены и для группового химического анализа бурых углей. Первоначально извлекаются битумы обработкой органическими растворителями, после чего выделяются гуминовые кислоты с помощью слабых водных растворов щелочей. Так как холодная и горячая вода извлекают очень мало веществ из бурых углей, а 2%)-ная соляная кислота практически не действует на них, продукт, который получается после удаления битумов и гуминовых кислот, называется остаточным углем. [c.161]

    АНАЛИЗ НЕФТЯНЫХ БИТУМОВ (АСФАЛЬТОВ) [c.757]

    Битум, являясь тя>Келой частью нефти, представляет собой чрезвычайно сложную смесь углеводородов и гетероорганичес-ких соединений самого разнообразного строения. Поэтому проблема идентификации всех составляющих битум соединений практически не разрешена. В то же время для решения многих задач оказывается достаточным определить содержание отдельных классов или групп веществ. Издавна общепринятым методом определения соединений различных классов и групп является разделение веществ по их избирательному отношению к растворителям и адсорбентам. Для разделения битумов известно большое число вариантов анализа, но в основе этих методов лежит выделение нерастворимой в н-алканах части и разделение растворимой части на силикагеле. По этому широко распространенному методу можно принять, что битум состоит из ас-фальтенов — соединений, нерастворимых в алканах С5—С7, смол — соединений, растворимых в алканах и десорбируемых с поверхности силикагеля бензолом или его смесью со спиртом, но не десорбируемых алканами, и масел — соединений, растворимых в алканах и десорбируемых указанными элюентами. [c.8]

    Методика анализа состоит в следующем. Навеску битума растворяют в бензоле, после чего осаждают асфальтены добавлением к раствору пентана (легкого бензина). Далее асфальтеиы промывают на фильтре и высушивают до постоянной пассы. Фильтрат переносят в колонку с силикагелем и последовательно промывают его бензином, смесями бензина и бензола, бензолом [c.8]

    Разновидностью этого метода является анализ с использованием лгоминесцирующей способности компонентов битума. Цвет люминесценции фракции связан с коэффициентом преломления  [c.9]

    Значительное сокрашение продолжительности анализа может быть достигнуто при использовании метода и аппаратуры, предложенных в работе [4] для анализа мальтеновой части (масел и смол) битумов. Метод заключается в следующем. [c.9]

    Асфальтены отделяют от битума, как описано выше, осаждением и фильтрованием, а мальтены разделяют на силикагеле элюированием изооктаном, бензолом и этанолом Вымываемые из хроматографической колонки соединения, растворенные в соответствующем растворителе, подаются на транспортирующую цепочку. Во время движения цепочки растворитель испаряется, а компоненты битума поступают в печь, где сгорают. Образовавшийся диоксид углерода регистрируется катарометром. Величина пика диоксида углерода позволяет судить о количестве соответствующего компонента битума. Принимая площадь всех пиков Пропорциональной общему содержанию мальтенов и учитывая количество предварительно выделенных асфальтенов, рассчитывают групповой химический состав битума. Как видно, количественная оценка группового химического состава по этому методу не связана с отбором больших объемов и высушиванием многочисленных фракций, что необходимо при традиционном анализе битума по коэффициенту преломления (или люминесценции). В результате этого продолжительность анализа маль тенов резко сокращается. Однако необходимость длительной (до-двух суток) операции по выделению асфальтенов из навее испытуемого образца по-прежнему остается. [c.9]

    Анализ передового опыта перевозки битумов показывает, что совершенствование перевозки в нашей стране должно основываться на увеличении доли битумов, перевозимых в горячем жидком состоянии, и на развитии автомобилвного транспорта. Объем битумов, перевозимых в жидко-м состоянии, можно в перспективе увеличить до 90%, т. е. примерно до зарубежного уровня. В то же время в отличие от зарубежной практики автомобильный транспорт не должен в нашей стране доминировать, так как битумная установка в СССР обслуживает территорию в среднем в 5—10 раз большую, чем в других экономически развитых странах [96], а при перевозке на значительные расстояния автотранспорт по сравнению с железнодорожным неэффективен [223]. [c.162]

    Хранение битумов на НПЗ. Полученный на установках битум перед сливом в транопортные средства хранится в горячем жидком состоянии в резервуарах (емкостях). Вместимость отдельных резервуаров и общая вместимость резервуарного парка определяются производительностью установки, длительностью паспортных анализов, ритмичностью поставки транспортных средств и объемом единовременно отгружаемых пар- тий битумов. С целью сокращения затрат, связанных с перекачиванием горячего н вязкого продукта, резервуарный парк располагают возможно ближе к окислительному узлу (на отечественных НПЗ — непосредственно на битумной установке). Резервуары для хранения битумов описаны выше. [c.163]

    Очень скудны сведения о составе и количестве органических паров, выделяющихся при сливе битума, что о бъяоняется отсутствием приемлемых методик для их отбора и анализа. Например, методика, предложенная в работе [271], может дать -лищь приблизительные сведения, поскольку для контроля проскока загрязнений через слой адсорбента (силикагеля) используют индикаторные трубки газоанализатора УГ-2, а они рассчитаны на определение углеводородов из фракций, которые не. тяжелее керосин01вых. Кроме того, не исключена конденсация тяжелых углеводородов и выпадение их из потока воздуха в линии, соединяющей адсорбент и индикатор. [c.170]

    Некоторые структурные параметры, особенно среднюю ароматичность, удобнее определять по спектрам ЯМР С, так как последние непосредственно отражают особенности углеродного скелета. Этот способ молекулярной спектроскопии, чрезвычайно информативный при анализе индивидуальных соединений или очень-узких фракций, в нефтяном анализе использовался, как это ни парадоксально, при изучении лишь самых сложных смесец ГАС нефтяных остатков, битумов, асфальтенов [69, 241, 242 и др.]. [c.31]

    Большие возможностп уточнения стру стурно-группового анализа нефтяных фракций кроются в совместном использовании данных ЯМР и других физико-химических методов. Сочетая результаты определения молекулярных масс, элементного состава, ПМР и ЯМР 1 С анализа, можно рассчитать 15—20 структурных параметров средней молекулы ароматической [244] или асфаль-теновой [245] фракций нефти или битума. Некоторые допущения, неизбежные прп использовании только радиоспектроскопических методов такого анализа, можно обосновать, привлекая данные И К спектроскоппп [246]. [c.32]

    Несмотря на отмеченную вероятность повышенной погрешности анализа, есть все основания считать, что в среднем кислород является вторым по значению (после серы) из гетероатомов, входящих в состав нефтей и нефтепродуктов. Его содержаниё в нефтях в большинстве случаев составляет от 0,1 до 1,0%, хотя в отдельных образцах может достигать 3,0%, а в нефтях из молодых, очень слабо погруженных залежей и в природных битумах и ас-фальтах — даже 7,0% [9, 10, 317, 594]. В последнем случае кислород становится наиболее распространенным из присутствующих в нефти гетероатомов, а КС — ее преобладающими компонентами. [c.83]

    Схематическое изображение слоистой структуры приводилось во многих публикациях [6, И, 12, 1038] для иллюстрации на схеме 7.1 воспроизведен вариант, предложенный авторами работы [1038] для макроструктуры асфальтенов из битума ромашкинской нефти. В рамках — фрагменты, составляющие отдельные слои. Штрихами показаны химические связи между атомами, расположенными в различных слоях. Конечно, строение фрагментов, сос-ставляющих отдельные слои макромолекул, должно отличаться несоизмеримо большим разнообразием. Кроме того, надо учитывать, что сведения об этих структурных особенностях получены с помощью рентгеноспектрального анализа кристаллических веществ и что за образование многослойных кристаллитов и плоскопараллельную укладку полициклоароматических блоков могут быть ответственны не только связывающие слои углеводородные или гетероатомные цепочки, но и взаимно ориентирующие я—л-взаимодействия непосредственно не связанных конденсированных ароматических систем. [c.187]

    Несколько образцов советских нефтей было подвергнуто спектральному анализу [27], результаты которого подтвердили содержание метал-лопорфириновых комплексов ванадия и никеля. Из исследованных 15 образцов нефтей и битумов только в 6 образцах не было обнаружено порфириновых комплексов. [c.30]

    П. Я. Деменковой [49] установлено, что высоким содержанием ванадия отличаются высокоасфальтеновые и высокосернистые нефти девонских отложений. Причем, ванадий и никель практически полностью связаны с асфальтосмолистыми веществами. Концентрация ванадия и никеля в смолах на порядок ниже, чем G асфальтенах. Более 50% ванадия и никеля сосредоточено в асфальтенах. Низкомолекулярные смолы и масла практически не содержат ванадия и никеля. Е. А. Глебовская и М. В. Волькенш-тейн [38] установили присутствие в нефтяных битумах ванадий- и никель-порфириновых комплексов. Природный ванадиевый комплекс имеет сложное ядро, содержащее замещенные СООН-груп-пы, сосредоточены в основном в асфальтосмолистой части. Анализ химических свойств никельного комплекса позволил авторам установить его нейтральный характер. [c.26]

    Несмотря на разнообразие нефтей, сэдержание углерода и водорода в асфальтенах колеблется в сравнительно узких пределах С 80—86% (масс.), Н 7,3—9,4% (масс.), отношение С Н также сравнительно постоянно и равно 9—П. Различие в содержании гетероатомов значительно больше. По данным Сергиенко содержание кислорода в асфальтенах в зависимости от природы нефти может колебаться от 1 до 9, серы, от О до 9, азота от О до 1,5— 3,0% (масс.). Химические и спектральные методы анализа показали, что кислород в асфальтенах входит в состав гидроксильных, карбонильных, карбоксильных и сложноэфирных групп. В нативных асфальтенах преобладают гидроксильные и карбонильные группы до 80% (масс.). В асфальтена.ч из окисленных битумов преобладают сложноэфирные группы [ 60% (масс.) кислорода] Некоторые исследователи считают, что 1 ера входит в состав суль фидных мостиков между фрагментами молекулы асфальтенов Другие, в том числе Сергиенко, придерхиваются мнения, что ато мы серы включены в циклические структурные элементы, содер жащие кольцо тиофена или тетрагидрэтиофена. Спектральными методами были также обнаружены циклические соединения, содержащие сульфоксидную группу. [c.211]

    На основапии рентгеноструктурно -о анализа было установлено, что выделенные из нефти (гудронов, битумов) асфальтены имеют слабовыраженные кристаллические сзойства. Более детальные исследования показали, что структура асфальтенов характеризуется ярко выраженными двумерными поли циклическими системами, образующими плоскости— слои ( грс)здья>>, пластины , а в угле-химии— ламели ). Диаметр этих с/ оев по первоначальным данным составлял 0,85—1,50 нм, а по эолее поздним — 3,0—5,0 нм. Слои, по-видимому, имеют вытянутую форму с длиной примерно 5,0 и шириной около 1,0—1,2 нм (рис . 10.1). [c.212]

    Полученный таким образом вес масла пересчитывают на свободный от золы исходный продукт, для чего в последнем определяют такн е золу. Возможно большее количество полученного масла, точно определенное но весу, перегоняют до кокса в реторте без термометра, причем перегонка дол киа быть закончена за 6—7 мин., считая от начала нагрева. Отгон взвешивают и часть его в количестве 1—3 г берут на анализ по снособу Энглера-Гольде. Расчет содержания парафина проводится как на испытуемый битум, так и на масло, полученное из битума после удаления асфальтенов, карбенов, карбоидов и смол. При н елании можно избежать перегонки, проводя анализ обессмолен-ного продукта по Залозецкому. [c.373]

    В последнее время для улучшения восироизводи-мости результатов и повышения скорости онределения смолисто-асфальтовых веществ в тяжелых нефтяных остатках, битумах и других подобных продуктах М. Нагиев и Р. Алахвердиева [211 ] предложили применять разработанную ими усовершенствованную методику Маркуссона. Особенностью этой методики является более жесткая стандартизация ироведения анализа. С этой целью силикагель был заменен окисью алюминия, петролейный эфир — нормальным нентаном пли прямогонной пентановой фракцией (температура кипения 28—35°) вместо экстракционного аппарата Сокслетта применяли специально сконструированный экстрактор (рис. ХУИ.1), в котором поддерживались постоянные температура и скорость постуилепия растворителя. [c.465]

    Глава XXVI. Анализ нефтяных битумов (асфальтов)..........................757 [c.885]

    Были получены образцы битумов, соответствующие заданным требованиям или близкие, к ним ( 2о образпов-), которые переданы цНлйпром-зданий для их эксплуатационной оценки. Оценка поведения битумов в условиях эксплуатации проводилась путем анализа их первоначальных свойств и изучения стабильности их во времени в результате воздействия на СЛОЙ исследуемого битума толщиной 1мм температуры 160°С в присутствии кислорода воздуха в течении 5, 1о, 2о, 35ч. Ранее проведенными исследованиями ЦНИИпромзданий установлено, что такое воздействие эквивалентно 1,3,5,7 годам эксплуатации битумных материалов в верхнем слое кровли в условиях г. Москвы [ 3 2. [c.34]


Смотреть страницы где упоминается термин Битум анализ: [c.389]    [c.10]    [c.98]    [c.24]    [c.31]    [c.185]    [c.285]    [c.2]   
Лакокрасочные материалы (1961) -- [ c.231 ]




ПОИСК







© 2025 chem21.info Реклама на сайте