Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Состав ингибированный

    Предотвращение образования взрывоопасной среды и обеспечение в воздухе производственных помещений содержания взрывоопасных веществ, не превышающего нижнего концентрационного предела воспламенения с учетом коэффициента безопасности, должно быть достигнуто контролем состава воздушной среды, применением герметичного технологического оборудования, рабочей и аварийной вентиляцией, отводом взрывоопасной среды. Чтобы предотвратить образование взрывоопасной среды внутри технологического оборудования, необходимо применять герметичное оборудование, поддерживать состав среды вне области воспламенения, использовать ингибирующие (химически активные) и флегматизирующие (инертные) добавки, подбирать соответствующие скоростные режимы движения среды. Взрывобезопасные составы среды внутри технологического оборудования должны быть установлены нормативно-технической документацией на конкретный производственный процесс. [c.21]


    Ввиду того, что хроматы взаимодействуют с органическими веществами, их нельзя вводить в состав антифризов. Имеется множество ингибирующих составов, выпускаемых разными фирмами. Чтобы облегчить обращение с ними, они обычно поступают в продажу растворенными в метаноле или этиленгликоле. Это, однако, ограничивает круг используемых ингибиторов. В США распространенным компонентом ингибирующих комплексов является бура (N326407-ЮНаО). Совместно с бурой иногда применяют сульфированные масла, создающие масляное защитное покрытие, и меркаптобензотиазол, который замедляет коррозию меди. Одновременно меркаптобензотиазол предотвращает агрессивное действие образующихся ионов Си +, которые ускоряют коррозию других металлов системы. В одной из рецептур предлагается вводить в антифриз 1,7 % буры, 0,1 % меркаптобензо-тиазола и 0,06 % Na2HP04.Последний добавляют специально для [c.280]

    Диалкилдитиофосфаты цинка наряду с улучшением смазывающих свойств масел эффективно ингибируют коррозию металлов и окисление масел [пат. США 3234270]. Эти соли рекомендуется вводить в состав композиций моторных масел для предохранения стальных деталей от коррозии. В состав композиций входят нафтенат цинка, продукт конденсации этиленоксида с аминами и фосфорсодержащий углеводород (последний в качестве моющей присадки). При испытании этой композиции как ингибитора коррозии стальные полированные пластины погружали в эмульсию, состоящую из 90 % масла и 10 % раствора бромистоводородной кислоты (0,24 %-ного). [c.188]

    Еще один ингибирующий состав можно получить путем обработки сульфированных, нитрованных и окисленных нефтепродуктов нитратами металлов. Такой состав улучшает также противокоррозионные свойства масла. [c.184]

    После очистки поверхность металлических деталей становится склонной к окислению. Для сохранения поверхности металла неокисленной, ее необходимо пассивировать. Для образования пассивного состояния поверхность металла обрабатывают различными ингибиторами, которые разделяют на три основные группы водорастворимые, водомаслорастворимые и маслорастворимые ингибиторы коррозии. Наиболее широкое распространение в технологии ультразвуковой очистки получили водорастворимые ингибиторы (неорганические и органические). Они обладают избирательным защитным действием защищая одни металлы, они не защищают другие или даже стимулируют их коррозию. Состав ингибирующих растворов приведен в табл. 7. [c.44]

    Состав ингибирующей смеси, мг/л Скорость коррозии, [c.12]

    Состав ингибирует коррозию железа и его сплавов, а также алюминия, олова, медных сплавов, свинца, припоев. Состав эффективен в качестве коррозионного ингибитора в открытых замкнутых водных системах при любых высоких и низких температурах. Композиция может быть использована в горячих или холодных водных системах, в горячих системах водоснабжения, паровых котлах и в системах охлаждения двигателей внутреннего сгорания. Композиция совместима как с известными растворами антифризов, так и с широко используемыми для этой цели спиртами. Она обеспечивает хорошую защиту от коррозии водяных рубашек, насосов, теплообменных поверхностей и других частей открытых систем. [c.28]


    Состав ингибирующих водных растворов [c.42]

    Чем сложнее состав нефтяной фракции, шире температурные пределы ее выкипания и выше средняя молекулярная масса, тем большее количество присутствует во фракции соединений, играющих роль естественных ингибиторов. Эффективность ингибирующего действия естественных противоокислителей возрастает в ряду бензины < керосины < дизельные топлива < моторные масла. В последних в наибольшей степени изменяется противоокислительная стабильность с увеличением степени их очистки. [c.44]

    В связи с этим следует отметить неодинаковую роль сравнительно низкомолекулярных гетероорганических соединений, не входящих в состав адсорбционных смол. Сульфиды, входящие в состав реактивных топлив, в чистом виде интенсивно окисляются [54], начиная с 90 °С, без индукционного периода. По мере накопления продуктов окисления скорость процесса снижается. Однако ингибирующий эффект сульфоксидов с повышением температуры уменьшается. Энергия активации реакции окисления сульфидов составляет примерно 7,5 кДж/моль, а для углеводородов топлива Т-7 в этих условиях она равна 192 кДж/моль. При добавлении к топливу Т-7 сульфидов (независимо от их количества) индукционный период при 120 °С сокращается с 72 до 14 мин (массовая доля серы в этих образцах составляла от 0,12 до 0,25%). Общая скорость окисления при увеличении концентрации сульфидов снижалась. Этот эффект наблюдается в узком диапазоне 120—130 °С. Дело в том, что при температурах [c.49]

    Однако показано, что при ингибировании смолообразования в керосинах эти антиокислители менее эффективны, чем в бензинах [1, 3, 4, v. 2, h. 17 31]. Это объясняется главным образом наличием в среднедистиллятных топливах высокомолекулярных углеводородов и неуглеводородных соединений, которые подвержены окислению, но плохо ингибируются обычными бензиновыми антиокислителями [31]. Компоненты вторичных процессов переработки нефти используют, однако, только в некоторых сортах топлив и после глубокой очистки, которая радикально изменяет их первоначальный состав. [c.97]

    Рост кристаллитов платины можно ингибировать, если внести в состав алюмоплатинового катализатора рений [87]. Очевидно, это связано со способностью рения образовывать с платиной сплавы, обладающие большей стабильностью, чем чистая платина. Содержание в катализаторе рения можно изменять, но в большинстве случаев оно равно содержанию платины. Роль рения заключается в предотвращении или замедлении спекания кристаллитов платины. В результате стабильность катализатора повышается, хотя активность и селективность остаются такими же, как у монометаллического катализатора. [c.151]

    Было найдено [150], что ингибирующая способность входящих в состав нефтей высокомолекулярных соединений играет важную стабилизирующую роль в пластовых системах, снижая скорость их термической деструкции в условиях недр и способствуя сохранению залежей в течение продолжительных периодов геологического времени. [c.348]

    Содержание и состав сернистых соединений в нефтяных фракциях зависит лишь от природы нефти и методов ее переработки кислородные же соединения могут образовываться при автоокислении некоторых углеводородов фракции, главным образом во время хранения и эксплуатации в двигателе, причем продуктов окисления может быть больше, чем кислородных соединений, перешедших во фракцию из сырья. Количество их зависит от наличия нестабильных углеводородов, продолжительности и условий окисления, накопления ингибирующих автоокисление соединений и др. [c.14]

    Так, например, известен состав на углеводородной основе [74] для защиты от коррозии металла в межтрубном пространстве нефтяных скважин, представляющий собой водонефтяную эмульсию, состоящую на 50...95% по объему из нефтяной фазы и содержащую специальную нефтерастворимую ингибирующую добавку. Однако этот состав нельзя использовать в нагнетательных скважинах из-за опасности снижения ее приемистости. [c.51]

    Химический состав и молекулярная структура КМ существенно определяются природой нефтяного сырья, процессами, условиями его карбонизации (температура, давление, объём и гидродинамическое состояние системы, удельная поверхность контакта со стенками аппарата, газопаровыми потоками, катализирующими, ингибирующими или инертными жидкими, жидкокристаллическими и твёрдыми фазами в объёме системы, интенсивность внешних воздействий волновой природы, активность, селективность и природа используемых химических реагентов, добавок и примесей и т.д.) и глубиной карбонизации. Используя эти факторы, можно в широких пределах изменять химический состав, структуру и свойства нефтяного углерода и в том числе пеков. [c.10]

    Исследование свойств органического связующего позволило провести ранжировку по активности ряда описанных в литературе катализаторов кислотного характера (соляная кислота, хлорное железо и других), и подобрать оптимальный состав катализатора, обеспечивающий необходимую формуемость материала в процессе производства и высокие прочностные характеристики при эксплуатации. Доказана необходимость использования многокомпонентных каталитических систем. Выявлено ингибирующее действие КФО и суперпластификатора С-3 на процесс схватывания гипса. [c.139]


    Химические факторы — состав и реакция среды, а также ее окислительно-восстановительные действия. В окружающей среде могут содержаться вещества, которые стимулируют или ингибируют жизнедеятельность микроорганизмов. Стимулируют жизнедеятельность микроорганизмов различные загрязнения. Они же являются важнейшим фактором инициирования процесса биоповреждений. Биоцидное действие для многих микробов оказывают соли тяжелых металлов (ртути, свинца, серебра, меди), галогены, некоторые галоиды и окислители, особенно хлорид бария, перекись водорода, перманганат и бихромат калия, борная кислота, углекислый и сернистый газы, фенол, крезол, формалин. Природа действия этих веществ различна, результат практически один — гибель [c.18]

    К типичным фосфоновым кислотам, которые предпочтительно входят в состав ингибирующей композиции, можно отнести этан-1-гидрокси-1,1-дифосфоновую, аминотриметиленфосфоновую, этилен диаминтетраметиленфосфоновую, гекса-метилендиаминтетраметиленфосфоновую кислоты и их водорастворимые соли. [c.17]

    Разработан бихроматный ингибитор для предупреждения коррозии в паровой фазе в щелях и местах контакта деталей неразборной и не доступной для обслуживания конструкции. В состав ингабитора наряду с органической ингибирующей присадкой входят хромовокислые соли Mg, Na или Са, а также rOj. Последний служит для уменьшения щелочности продуктов коррозии и солей, входящих в состав ингибирующей смеси . [c.34]

    Состав ингибирующих растворов и режимы антикоррозийной обработки заготовок даны в табл. 1.83. Заготовки из нержавеющих сталей антикоррозионной обработке не подвергают их после ЭХЖАО промывают холодной водой и сушат. [c.179]

    Активность катализатора при Al/Ti < 1 также заметно повышается в результате удаления растворимых продуктов (рис. 10), в состав которых входит изобутилалюминийдихлорид. Ингибирующее влияние изобутилалюминийдихлорида на полимеризацию изопрена подтверждено при введении его в каталитическую систему (рис. 11). [c.216]

    При термоокислении ПДМС образуются формальдегид и параформ, окись и двуокись углерода, вода, метанол, муравьиная кислота и обычные продукты термодеструкции — циклосилоксаны, метан, водород. В окисленном полимере появляются боковые си-ланольные группы, в состав которых входит часть атомов водорода отщепившихся метильных групп, но в нем отсутствуют перекисные, карбонильные, карбоксильные и кремнийгидридные группы [66]. Накопление боковых силанольных групп приводит к ускорению как структурирования полимера в результате их конденсации, так и термодеструкции с выделением циклосилоксанов и метана по реакциям (34) и (35) [66, 67]. Потери массы очи щенного ПДМС за одинаковое время при 300 °С на воздухе в 2—3 раза выше, чем в вакууме. Термоокисление ингибируется различными антиоксидантами [66—68. Все имеющиеся данные [c.487]

    При анаэробном брожении в итоге ферментативного расщепления гексоз до осколков, содержащих три углеродных атома, возникают многообразные конечные продукты. Распад глюкозы (после ее фосфорилирования) с образованием фосфодиоксиацетона и фосфоглицеринового альдегида осуществляет фермент альдолаза (зимогексаза, альдегид-лиаза), которая активируется ионами двухвалентных металлов [69]. В состав альдолазы входит цинк и в очень малых количествах железо и марганец [72]. Добавление к реакционной системе хелатирующего агента, связывающего катионы (например, этилендиаминтетрауксусной кислоты), ингибирует альдолазу. Активность ингибированного таким образом фермента восстанавливается при добавлении в систему ионов Zn +, Ре , Со +, Мп-+. Можно предположить, что эти ионы участвуют в про- [c.94]

    Было установлено [36, 58, 137, 154], что на скорость термического крекинга парафиновых углеводородов ингибирующее действие оказывают как промежуточные продукты, так и специально введенные ингибиторы (N0, С,-.Не, СЛа и др.). В первоначальный период исследований было указано, что при введении в реакционную зону крекинга олефинов или окиси азота скорость термического крекинга парафиновых углеводородов снижается до всегда одинакового предельного значения. При этом состав продуктов реакции не меняется. Это дало основание Хиншельвуду [232] считать, что ингибитор подавляет цепные реакции распада. Такая гипотеза хорошо объясняет постоянство скорости реакции при использовании различных ингибиторов. Однако она не может объяснить, почему продукты одного и того л<е состава получаются при крекинге с различным механизмом. [c.83]

    До недавнего времени четвертичные соли арилпиридинов и алкилхинолинов не находили широкого применения в качестве ингибиторов коррозии металлов в кислых средах. В то же время данные азотсодержащие соединения входят в состав некоторых продуктов нефтехимических производств, обладающих относительно невысокой стоимостью. Поэтому изучение ингибирующей способности соединений, включающих четвертичные соли арилпиридинов и алкилхинолинов, а также создание высокоэффективных ингибиторов коррозии на их основе является актуальной научно-технической задачей. [c.279]

    Основными факторами, учитываемыми обычно [6] при разработке и исследовании ингибиторов, являются 1) строение и свойства органического соединения 2) характер его взаимодействия с металлической поверхностью 3) состав и специфика контакта коррозионной среды с защищаемым объектом. До настоящего времени не установлено однозначной зависимости между различ-ны.ми характеристиками этих факторов и защитной эффективностью ингибиторов коррозии вследствие чрезвычайной чувствительности ингибирующего действия к изменяющимся условиям эксперимента.. Теоретическими критериями создания ингабитороБ коррозии под напряжением, с нашей точки зрения, могут служить количественные и качественные показатели их адсорбируемости на металлической подложке и влияния на кинетику электродных реакций в совокупности с данными коррозионно-механических испытаний, проведенными в ингибированных коррозионных средах при действии на металл нафузок, по характеру и зчяч15ниям близких к реальным. [c.180]

    Все растворимые соединения свинца ядовиты. Активными биохимическими агентами свинца в организмах животных являются его триорганилзамещенные соединения. В организме человека свинец скапливается в костях. Он ингибирует действие важных ферментов, способствующих введению железа в состав крови, понижает гемоглобин. Избыточное содержание свинца ведет к параличу нервов сгибающих и разгибающих мышц, конвульсиям, даже коме (называется свинцовая энцефалопатия). Действие фатально и необратимо. Оказывает влияние на всю систему воспроизведения потомства. [c.596]

    Многообразие известных аитиоксидантов объясняется сложностью выбора подходящего стабилизатора для того или иного полимера. Эта сложность заключается ие только в том, что аитиоксидапт, эффективный для стабилизации одиого полимера, может оказаться неэффективным для другого, но и в том, что обычно используемые в промышленности антиоксиданты (низкомолекулярные вещества) в большей или меньшей степени обладают рядом недостатков. Это — ограниченная совместимость с полимерами, высокая летучесть, способность вымываться из полимеров водой или органическими растворителями и т. д. Решение проблемы выбора рациональных стабилизаторов упрощается, если вместо низкомолекулярных антиоксидантов использовать высокомолекулярные (ВАО), в состав которых входят группы, способные обрывать радикальные процессы окисления защищаемых полимеров. Высокомолекулярные антиоксиданты прежде всего нелетучи, поскольку это свойство является общим для всех полимерных веществ. Выбором полимерной матрицы и количества ингибирующих групп в ВАО легко решается проблема совместимости таких стабилизаторов с полимером. [c.30]

    Потенциодинамическими исследованиями было показано, что за счет азота в гетероцикле хинолина, входящего в состав эпоксидно-ка-менноугольной композиции, обеспечивается в присутствии толуола хемосорбционная связь. По мере увеличения степени заполнения электрода хинолином из раствора толуола ток растворения железа значительно снижается, и при Е = 0,04 В ток коррозии железа в буферном барат-ном растворе составляет 0,12 мА, а при предельном заполнении уменьшается на три порядка (рис. 36). Известно, что высокий ингибирующий эффект проявляют вещества, если их адгезионная связь с металлом выше, чем взаимодействие этого вещества с компонентами раствора. Изучалась адгезионная связь с железом в воде для пленкообраэующих на основе эпоксидно-каменноугольных смол с хинолином по методике, основанной на определении комплексного ШУ-показателя (рис. 37). [c.134]

    Изучая влияние разных факторов на состав остаточной нефти, авторы [31-33] пришли к нескольким важным выводам. Во-первых, благодаря длительному времени контакта флюидов в пласте, происходит заметное окисление компонентов нефти. Во-вторых, глубина окисления падает с увеличением концентрации асфальтенов. Это можно объяснить, в первую очередь, ингибирующей способностью свободных радикалов, которые, согласно современным представлениям о строении смолоасфальтеновых веществ [43], образуют ядра дисперсных частиц асфальтенов. Авторами было установлено также, что степень окисления компонентов нефти растет с уменьшением минерализации воды. [c.38]

    Химический состав бптумов I и II типов (за исключением битума термического крекинга) с введенными ингибирующими добавками изменился чрезвычайно мало, что указывает иа отсутствие (или замедление) окислительных реакций, вызывающих изменение состава и структуры этих битумов (см. табл. 19). [c.114]

    ПЕПСИН, фермент класса гидролаз. Мол. масса П., выделенного из желудка свиньи, ок, 35 ООО, р1 2,08 (для де-фосфорилиров. белка), оптим. каталитич. активность прн pH ок. 2,5—3. Активный центр включает карбоксильные группы, к-рые специфически реаг. с ингибиторами, содержащими зпокси- или диазогруппу. Ингибируется пепстати-ном, образуется в желудке позвоночных из предшественника (пепсиногена) отщеплением N-концегвого 42-членного пептида. Катализирует гидролиз белков и пептидов, участвует в процессах пищеварения. Специфичен к пептидным связям, образованным хотя бы одной гидрофобной аминокислотой, расщепляет также депсипептиды. Входит в состав лек. ср-в, применяется в сыроделии, а также для определения первичной структуры белков. [c.428]


Смотреть страницы где упоминается термин Состав ингибированный: [c.507]    [c.67]    [c.633]    [c.13]    [c.223]    [c.304]    [c.13]    [c.633]    [c.180]    [c.181]    [c.304]    [c.295]    [c.158]    [c.420]    [c.484]    [c.517]    [c.196]   
Лакокрасочные материалы Т 2 (1977) -- [ c.243 , c.244 ]




ПОИСК





Смотрите так же термины и статьи:

Ассортимент, свойства и области применения пленкообразующих ингибированных нефтяных составов

Влияние состава раствора на проявление органическими веществами ингибирующего наводороживания действия

Ингибированные растворы, состав

Ингибированный состав ИС для консервирования металлических изделий

МЕТОДЫ ОЦЕНКИ ФУНКЦИОНАЛЬНЫХ СВОЙСТВ ИНГИБИРОВАННЫХ НЕФТЯНЫХ СОСТАВОВ

МОДЕЛИРОВАНИЕ И ОПТИМИЗАЦИЯ ФУНКЦИОНАЛЬНЫХ СВОЙСТВ ИНГИБИРОВАННЫХ НЕФТЯНЫХ СОСТАВОВ

ОБЩИЕ СВЕДЕНИЯ О ПЛЕНКООБРАЗУЮЩИХ ИНГИБИРОВАННЫХ НЕФТЯНЫХ СОСТАВАХ

ОСНОВНЫЕ КОМПОНЕНТЫ ИНГИБИРОВАННЫХ НЕФТЯНЫХ СОСТАВОВ

ОСОБЕННОСТИ ПРИМЕНЕНИЯ ИНГИБИРОВАННЫХ НЕФТЯНЫХ СОСТАВОВ

ПЛЕНКООБРАЗУЮЩИЕ ИНГИБИРОВАННЫЕ НЕФТЯНЫЕ СОСТАВЫ

Пленкообразующие ингибированные нефтяные составы ПИНС

Указатель групп и марок пленкообразующих ингибированных нефтяных составов



© 2025 chem21.info Реклама на сайте