Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этилен в водных растворах

    Анализ газов. В газах определялись ацетальдегид (оксимным методом), углекислый газ, окись углерода, водород и непредельные углеводороды (изобутилен поглощался 68% раствором серной кислоты пропилен, бутилен, псевдобутилен и дивинил — 83% серной кислотой, а этилен — водным раствором брома в бромистом калии). [c.1677]

    Ароматические углеводороды вследствие своей резонансной характеристики более устойчивы к иррадиации [772, 773], но с ними могут индуцироваться химические реакции. Таким образом, обработка Х-лучами нейтральных водных растворов бензола, насьщенного кислородом, дает фенол, пирокатехин-хинол, пара-бензохинон, альдегид и следы дифенила. В этом случае молекулярный кислород, но-видимому, принимает участие в реакциях радикалов [774]. Можно заметить для сравнения в водном растворе, содержанием кислород и этилен, гамма-лучи вызывают цепные реакции, которые образуют альдегиды с меньшим содержанием спиртов, кислоты, перекиси водорода и других перекисей. Для альдегидов выход в молекулах на 100 эе был около 200 [775]. Подобным же образом индуцируется гамма-лучами хлорирование более низких ароматических соединений таких, как бензол, толуол, ксилол и мезитилен однако бензол устойчив [776]. Как для бензола, так и для толуола хлорирование пропорционально квадратному корню интенсивности излучения это применимо и к присоединению, и к замещению [777 ]. Изучалось также и влияние радиации на асфальты [778]. Изменения, по-видимому, в отличие от вызываемых продувкой воздухом, линеарны по времени и проходят с небольшой скоростью. [c.152]


    Типичный состав отходящего газа после отмывки его водным раствором щелочи от НгЗ и СО2 и осушки охлаждением следующий (об. 7о) метан — 37, этан — 19, этилен — 19, Н2—9, N2 — 13 и СО —3. [c.242]

    Технологическая схема процесса приведена на рис. 6.14. В реактор 7 подают катализаторный раствор, уксусную кислоту, этилен, кислород и циркуляционный газ [концентрация кислорода в исходном газе около 5,5% (об.)]. Реакция осуществляется при 130 °С и давлении 3 МПа. Выходящая из реактора смесь непрореагировавшего этилена, кислорода, продуктов реакции и уксусной кислоты после охлаждения в холодильнике 3 и дросселирования поступает в газосепаратор 4. Несконденсировавшиеся газы после поглощения двуокиси углерода раствором соды в скруббере 5 (с последующей десорбцией Og в отпарной колонне 6) возвращаются в реактор J. Для удаления инертных компонентов часть газа периодически выводится иа системы. Конденсат из газосепаратора 4 поступает в колонну 7, в которой отгоняются продукты реакции, включая образовавшуюся воду. Из куба этой колонны отбирается непрореагировавшая уксусная кислота, которая затем возвращается в реактор. В колонне 8 отгоняются низко-кипящие компоненты, которые для выделения ацетальдегида поступают в абсорбер 12. Поглощенный водой ацетальдегид выделяется из водного раствора ректификацией в колонне 13. Отбираемый из куба колонны 8 продукт, состоящий из винилацетата, воды и высококипящих компонентов, разделяется в отстойнике 9 на два слоя. Водный слой после извлечения следов винилацетата направляют в канализацию. Органический слой из отстойника 9 направляют для удаления воды в колонну 10, из которой смесь продуктов поступает в ректификационную колонну И, где отгоняется чистый винилацетат. Из куба колонны И выводятся высококипящие примеси. Пары воды с примесью винилацетата из верхней части колонны 10 возвращаются в колонну 8. [c.193]

    Для предотвращения накопления инертных газов, поступающих в примесях со свежими этиленом и кислородом, часть газа после абсорбера сбрасывается. Водный раствор окиси этилена, полученный в результате абсорбции, проходит дальнейшую технологическую обработку (десорбция, ректификация) до получения товарной окиси этилена. [c.115]

    Прямая гидратация этилена с применением фосфорнокислого катализатора производится следующим образом (рис. 126). Реактор представляет собой колонну высотой 10 ж и диаметром 1,5 м. Чтобы предохранить от действия фосфорной кислоты стальной корпус колонны, она внутри футерована листовой красной медью, с которой эта кислота не реагирует. В колонну помещен катализатор, слой которого составляет 8,5 м. В верхнюю часть колонны под давлением 75—80 ат и при температуре 220—270° С подается смесь этилена и водяного пара. Эта смесь за счет выделяющегося при реакции тепла нагревается до 280—300° С и проходит сверху вниз через слой катализатора. Реакция с водой за один проход через слой катализатора происходит лишь частично, поэтому проводится многократная циркуляция смеси. В конечном итоге выход этилового спирта составляет 95% по отношению к использованному этилену. Из нижней части колонны получают водный раствор спирта концентрацией [c.328]


    Этилен под действием водного раствора перманганата калия [c.90]

    Катализатором служили окислы вольфрама, промотированные окисью цинка и нанесенные на силикагель содержание вольфрама в катализаторе равнялось 20%. Процесс проводили при температуре 250—300° и давлении 300 ат. В верхнюю часть реактора вводили этилен и воду, а снизу отбирали 20%-ный водный раствор этилового спирта. Суточный съем спирта с 1 л катализатора равнялся 1 л. [c.147]

    При введении этилена в водный раствор хлористого палладия образуется комплекс этилен — хлористый палладий [c.75]

    Особенности технологического процесса выход этилового спирта после прохождения этилена через контактный аппарат с катализатором составляет 5%, поэтому этанол отделяют, а непрореагировавший этилен повторно вводят в контактный аппарат (принцип циркуляции). Нагретые продукты реакции поступают в теплообменник, где охлаждаются и отдают теплоту этилену, поступающему на гидратацию. Этанол из водного раствора выделяют в ректификационной колонне. [c.191]

    Важным химическим свойством этилена и его гомологов является способность легко окисляться уже прн обычной температуре. При этом окислению подвергаются оба атома углерода, соединенные двойной связью. Если этилен пропускать через водный раствор перманганата калня КМпОд, то характерная фиолетовая окраска последнего исчезает, происходит окисление этилена перманганатом калия  [c.290]

    Паро-газовая смесь, нагретая до 290°, поступает в гидрататор 8. Продукты реакции в смеси с непрореагировавшим этиленом и парами воды из гидрататора проходят последовательно тройник нейтрализации 9, солеотделитель 10 и далее теплообменники Зяб, где значительно охлаждаются. Необходимый для нейтрализации спирто-водный раствор подается насосом 11. Нейтрализованные продукты после теплообмена направляются в сепаратор [c.256]

    Потенциальным источником альдегидов является окисление комплекса хлористого палладия с олефинами. Комплекс хлористого палладия с этиленом был изуче в качестве системы- для промышленного получения ацетальдегида с водным раствором ацетата натрия комплекс образует винилацетат [66]. [c.17]

    При действии на этилен водного раствора КМПО4 при нагревании двойная связь также разрывается  [c.68]

    Тотчас по выходе из дуговой печи газ охлаяедается до 150°, путем впрыска воды, затем освобождается от сажи в циклонах или посредством суконных фильтров. Смолообразные полимеры удаляются из газа промывкой маслом, синильная кислота — водой, а сероводород — окисью железа. Газ в четыре ступени сн<имается до 18 ат и после удаления высших ацетиленов абсорбцией маслом под давлением промывается водой для извлечения ацетилена. Водород, этилен и этан при этом не растворяются и выводятся из абсорбера. Над водным раствором ацетилена давление понижают до 2 ат, [c.94]

    Бромная вода и этилен дают бромгидрин, но при этом образуется много дибромида [73], применение водного раствора карбоната или бикарбоната, аналогичное методу Виллиамсона для Н0С1, по-видимому, [c.372]

    Хлористая медь и другие соединения меди весьма полезны для выделения и очистки диенов с сопряженными двойными связями. По Френсису в 1951 г. в США был выдан 21 патент на процесс поглощения олефинов модными солями [5]. Твердая безводная полухлористая медь образует твердый комплекс с этиленом [231, а также с пропиленом и изобутиленом, однако эти комплексы оказываются стойкими только нри высоком парциальном давлении этих олефинов. Водный раствор полухлористой меди и хлористого аммония образует комплексы с циклопентеном и циклогексеном, которые разлагаются приблизительно при 90 с выделением олефинов [18]. Было предложено применять водные растворы медных солей, содержащие соли дныетиланплина, для поглощения этилона из газов с 10% этилена для нолучения концентрированного этилена рекомен/ овалось нагревание [12]. [c.388]

    Этилен-гликоль может быть также получен действием на дихлар-этилен водно-спиртового раствора карбоната натрия и уксуснокислого н №рия при 150° С и под давлением в 12 ат, но эта реакция еще-не ооущестштяется в пррмышленности. [c.370]

    Образовавшаяся в результате реакции смесь продуктов последовательно отдает теплоту в теплообменнике, конденсируется водный раствор спирта и затем окончательно охлаждается в холодильнике. Полная отмывка газа от паров спирта идет в скруббере. Непрореагировавшнй этилен после сжатия вновь направляется в гидрататор, а спирт-сырец подвергается ректификации. На 1 тэтилового спирта расходуется 0,685 т этилена, 5,6 кг фосфорной кислоты, 2 кг носителя и 16 кг едкого натра. Срок службы катализатора равен примерно 600 ч. Введением распыленной фосфорной кислоты в реактор в ходе процесса можно продлить службу катализатора. [c.173]

    Технологическая схема процесса получения окиси этилена, разработанного фирмой S ientifi Design, изображена на рис. 6.24. Воздух, подаваемый компрессором У, смешивается с этиленом и циркулирующим реакционным газом и вводится в низ контактного аппарата 2, в трубки которого загружен катализатор. Температура окисления регулируется скоростью циркуляции теплоносителя. Реакционные газы охлаждаются в теплообменнике, нагревая циркулирующий газ, и в холодильнике, а затем компримируются дожимающим компрессором 3. Далее газ поступает в основной скруббер 4, где окись этилена улавливается водой. Большая часть выходящего газа направляется на смешение с исходной эти-лено-воздушной смесью, меньшая — в дополнительный контактный аппарат 5 для окисления непрореагировавшего этилена, а затем на промывку водой в дополнительный скруббер 6. Отходящий из скруббера газ выбрасывается в атмосферу. Водные растворы из скрубберов 4 и 6 смешиваются и поступают в десорбер 7. Из верхней части десорбера отводят окись этилена, пары воды и Oj. Они компримируются и направляются на двухступенчатую ректификацию. В колонне 9 выделяется этилен, Oj и другие легкокипящие компоненты. С верха колонны 10 отбирают окись этилена. В кубе этой колонны остаются высококипящие примеси (вода, ацетальдегид, этиленгликоль). [c.206]


    Различные варианты производства этилбензола имеют отличительные особенности, но в основе этих процессов лежат общие принципы, В системе неизменно присутствуют три фазы — газообразный этилен, жидкие ароматические углеводороды и жидкий катализаторный комплекс. Реакция протекает в катализаторном комплексе, и между ним и органической фазой устанавливается равновесие. Затем жидкий продукт охлаждают и разделяют на два слоя. Нижний слой— катализаторный комплекс — возвращают в систему. Хлористый алюминий теряется из системы двумя путями—за счет растворения в органическом слое и при выгрузке части отработанного комплекса для его замены свежим. Ката51и-заторный комплекс отдельно подвергают гидролизу, чтобы получить водный раствор хлористого алюминия, отводимый с установ- [c.270]

    Это так назьшаемый процесс Уоккера, в котором этилен окисляется в ацетальдегид в водном растворе хлорной меди, содержащем следы хлористого палладия. При производстве ацетальдегида этот процесс можно осуществить в двух вариантах как одно- и как двухстадийный /2/. В ходе реакции хлористый палладий, окисляя этилен в ацетальдегид, сначала восстанавливается до элементарного Палладия, но тотчас же вновь окисляется в хлористый палладий хлорной медью. В процессе регенерации катализатора хлористая медь снова окисляется до хлорной меди кислородом, который является в конечном счете окисляющим агентом /8/. [c.284]

    Сепарация олефинов основана на различии в летучести разных соединений. Она осуществляется так же, как и сепарация углеводородов парафинового ряда (табл. 48). Пропилен и бутилены могут быть разогнаны и сконденсированы при давлении около 1519,8 кПа и охлаждении водой, имеющей температуру окружающей среды. Оставшиеся этилен и легкие газы нуждаются в абсорбционно-рефрижерационном методе разгонки. Различные бутилены обычно сепарируются благодаря их химическому взаимодействию с растворяющими кислотами с водным раствором серной кислоты первым реагирует изобутилен, затем бутен-2 и бутен-1. Следовательно, для производства каждого из этих газов в относительно чистом виде может быть применен метод проти-воточной экстракции. [c.234]

    Если растворы солей одновалентной медн проявляют особую растворяющую способность только по отношению к этилену, то 50%-ный водный раствор азотнокислого серебра погжицает в больших количествах все олефнпы, из которых легче всего растпоряется в нем бутен-1. [c.177]

    Реакция начиналась при температуре 70—90 " п протекала при 150°. В течение 6 —10 час. превращалось около 35—40% этилена. При применении раствора едкого патра вместо едкого кали этилена превращалось всего 20%. Эту реакцию можно осуществить и в большем масштабе, пропуская водный раствор указанных компонентов вместе с этиленом через подогреватель в обогреваемый реактор полимеризации (полимеризатор), работающий нод давлением 200—300 ат. Применение других эмульгаторов не дает су цествеппых преимуществ. Полимеризация может также протекать в присутствии органических растворителей. При добавке более 50% метанола образуются твердые полимеры. [c.573]

    В немецком процессе [38] получившийся в результате реакции между этиленом, хлором и водой (стр. 185) 4—5%-ный водный раствор этиленхлоргидрина, содержавший некоторое количество дихлорэтана, смешивали с 10—20%-ным избытком горячей кашицы гашеной извести и подавали в верхнюю часть колонного реактора, откуда эта смесь стекала вниз, перетекая с полки на полку. В нижнюю часть колонны вводили острый пар с таким расчетом, чтобы жидкость в верхней части все время кипела. Выходящие из аппарата пары состояли из окиси этилена, дихлорэтана и воды. Больитую часть водяных паров конденсировали и возвращали обратно в реактор. Окись этилена отделяли от дихлорэтана и остатка водяных паров ректификацией под атмосферным давлением на двух колоннах непрерывного действия. В этом процессе потери окиси этилена за счет ее гидратации в этиленгликоль были незначительными. [c.188]

    Во многих комплексах алкенов а-связи металл — углерод отсутствуют. Такие комплексы получают, например, обработкой безводного хлорида или бромида Р1(1У) непредельными органическими соединениями в безводных растворителях. Ионы [РёСи] , Ад+ и некоторые другие реагируют с этиленом в водном растворе константа равновесия /С= ] [С1 ]  [c.106]

    Элементы подгруппы кальция обладают сравнительно небольшими комплексообразующими свойствами, и прочные соединения они дают только с комплексонами, например с этилен-диаминтетраукеусной кислотой, что вообще характерно и для других двухвалентных ионов. Аммиакаты щелочноземельных металлов общей формулой [Ме(ЫНз)в]Х2 получают действием аммиака на безводные галогениды. В водном растворе они подвергаются гидролизу. [c.393]

    Важным химическим свойством этилена и его производных является способность легко окисляться уже при обычной температуре. При этом окислению подвергаются оба атома углерода, соединенные двойной связью. Если этилен пропускать в водный раствор перманганата калия КМПО4, то характерная фиолетовая окраска последнего исчезает, происходит окисление этилена КМПО4. Эта реакция используется для установления непредельности исследуемого вещества — содержания в нем двойных или тройных связей. [c.349]

    Этилен- и пропиленгликоли продукты находят широкое применение в качестве растворителей, антифризов и др. Мировой объем их производства превышает 15 млн. тонн в год [1]. В настоящее время гликолю получают путем некаталитической гидратации а-оксидов, которую осуществляют при 140-200°С и 20-40 ат, с использованием 8-10 кратного массового избытка воды по отношению к а-оксиду. Основными недостатками этого процесса являются низкий выход моногликоля (менее 90%), а также высокие энергозатраты при вьщелении гликолей из разбавленных (12-15%) водных растворов. Одним из основных путей повышения эффективности процесса гидратации является использование гетерогенных катализаторов [2-6]. [c.66]

    Этилен- и пропиленгликоль находят широкое применение в качестве полупродуктов для синтеза полимерных материалов и антифризов. Мировой объем их производства превышает 15 млн т в год [1]. В настояшее время в основным промышленным способом получения гликолей является гфоцесс некаталитической гидратации а-оксидов, осуществляемый при 140-200°С и 20-40 атм, с использованием 8-10 кратного массового избытка воды по отношению к а-оксиду. Основными недостатками этого процесса являются низкий выход моногликоля (менее 90%), а также высокие энергозатраты при выделении гликолей из разбавленных (12-15%-х) водных растворов. В связи с этим актуальной задачей является разработка про- [c.139]

    Меркаптаны способны присоединяться к различным веществам. Этантиол образует гидрат СаНдЗН-18Н2О, стабильный при низких температурах. В литературе имеются сообщения об образовании комплексных продуктов с хлористым алюминием, четыреххлористым титаном, фтористым бором, фтористоводородной кислотой, окисью азота и мочевиной (продукты соединения с мочевиной дают только производные нормального строения). На свету этантиол разлагается на этилдисульфид, водород, этилен и высшие алкены. В водных растворах тиол под действием рентгеновских, бета- и гамма-лучей обычно превращается в дисульфид. Термическое разложение первичных и вторичных тиолов, легко протекающее при температуре выше [c.269]

    Показатель Вода 23.1 %-ный водный раствор Nad 29,9 %-ный водный раствор СаС1, 60 %-ный раствор пропи-ленгли-коля в воде 67 %-ный раствор этилен-гликоля в воде Аммиак Трихлор- этилен Т олуол Изолента н [c.301]

    Группа биологически активных фосфорсодержащих органических соединений включает два типа лекарственных препаратов. К первому типу относятся этиленимиды фосфорной и тиофосфорной кислот — эффективные противоопухолевые средства [192, 216, 245]. Интерес к этим соединениям возник в начале 50-х годов в связи с гипотезой о легкой циклизации в водных растворах производных бис-(Р-хлорэтил)амина (азотистых аналогов иприта, обладающих противоопухолевой активностью) в этилен-иммониевые соединения. Последние и считались ответственными за алкилирующее действие препаратов в организме. [c.16]


Смотреть страницы где упоминается термин Этилен в водных растворах: [c.329]    [c.365]    [c.321]    [c.371]    [c.451]    [c.259]    [c.192]    [c.142]    [c.177]    [c.391]    [c.53]    [c.85]    [c.562]    [c.213]   
Массопередача (1982) -- [ c.38 ]




ПОИСК







© 2025 chem21.info Реклама на сайте