Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо с аминокислотами

Рис. 20-23. Цитохром с, который представляет собой глобулярный белок со 104 аминокислотами, связанными в одну цепь, и группой гема, содержащей атом железа. На этом схематическом рисунке каждая аминокислота условно представлена пронумерован- Рис. 20-23. Цитохром с, который представляет <a href="/info/1795776">собой</a> <a href="/info/168627">глобулярный белок</a> со 104 аминокислотами, связанными в одну цепь, и <a href="/info/1415433">группой гема</a>, содержащей <a href="/info/686925">атом железа</a>. На этом схематическом рисунке каждая аминокислота условно представлена пронумерован-

    В белке волос и шерсти, а также других кератинах а-спирали многократно скручены друг с другом в многожильные тяжи, которые образуют видимые глазом нити. Цепи белков шелка вытянуты во всю длину (а не свернуты в спираль) и соединены с параллельными цепями водородными связями в листы, показанные на рис. 21-2,а. В глобулярных белках цепи не являются полностью вытянутыми или полностью свернутыми в а-спираль чтобы молекула имела компактную структуру, она должна быть надлежащим образом деформирована. В молекуле миоглобина (см. рис. 20-25) 153 аминокислоты белковой цепи свернуты в восемь витков а-спирали (обозначенные на рисунке буквами А-Н), которые в свою очередь свернуты так, что в результате получается компактная молекула. Витки Е и Р образуют карман, в котором помещается группа гема, и молекула кислорода может связываться с атомом железа этого гема. Подобным же образом построена молекула гемоглобина, которая состоит из четырех миоглобиновых единиц (см. рис. 20-26). Небольшой белок цитохром с (см. рис. 20-23) имеет меньше места для витков а-спирали. 103 аминокислоты этого белка свернуты вокруг его группы гема подобно кокону, оставляя к ней доступ только в одном месте. У более крупных ферментов, например трипсина (223 аминокислоты) и карбоксипептидазы (307 аминокислот) в центре молекулы имеются области, где белковая цепь делает ряд зигзагов, образуя несколько параллельных нитей, скрепленных водородными связями подобно тому, как это имеет место в молекуле шелка. [c.317]

    Правилами ШРАС/ШВ [12] приняты английские трехбуквенные сокращения тривиальных названий аминокислот, начинающиеся с прописной буквы Gly, Ala, Туг и т. д. (применяемые либо для всей молекулы аминокислоты, либо для ее радикала) особенно часто такие сокращения применяются для описания аминокислотной последовательности в пептидах и белках. Разрешена также [13] и однобуквенная система сокращений, но она применяется гораздо реже. Имеются также правила номенклатуры, касающиеся часто применяемых сокращений для синтетических пептидов [14], для синтетических модификаций природных пептидов [15], пептидных гормонов [16] и белков, содержащих железо и серу [17]. [c.187]

    Следующий пример нормальная щитовидная железа отвечает за синтез и выделение необычной аминокислоты — тироксина (1-28). Этот гормон регулирует скорость клеточных окислительных процессов [2]. [c.23]

    В таких комплексах центральный атом и связ анные с ним группы расположены в одной плоскости. Аналогично построенные, но менее прочные / п+ -комплексы аминокислот часто обладают свойством повышать содержание сахара в крови, подобно гормону поджелудочной железы глюкагону (стр. 885). Комплексы аминокислот с тяжелыми металлами могут стабилизоваться при участии боковых [c.354]


    К настоящему времени идентифицировано около двух тысяч ферментов. Из них многие выделены в виде чистых гомогенных препаратов и свыше 150 получены в кристаллическом виде. Оказалось, что ферменты состоят либо целиком, либо в основном из белков, т. е. являются полимерами, образованными из аминокислот и имеющими определенную пространственную структуру полипептидных цепей. В состав небелковой части фермента могут входить ионы металлов и некоторые органические вещества. Если последние обладают каталитической активностью, входя в активный центр фермента, то их называют коферментами. Например, в состав окислительных ферментов входят органические соединения железа (так называемый гем). [c.301]

    Что касается аминокислот, то они могли получиться в результате самых разнообразных реакций (термическим путем из метана, аммиака и воды), при УФ облучении смесей аммиака, полиформальдегида и солей железа, при действии электрических разрядов и радиоактивных излучений на газообразные среды, содержащие метан, пары воды и аммиак, и другими путями). [c.373]

    Из аминокислот, отсутствующих в белках, отметим тироксин — один из гормонов щитовидной железы. Он значительно [c.188]

    Все известные ферменты представляют собой длинные цепи из а-амино-кислот (относительная молекулярная масса порядка 0,5 млн), свернутые в компактную форму, в которых имеется несколько реакционноспособных участков. Изучение природы ферментов показало, что, помимо белка, многие из них содержат и другие соединения. Так, например, в составе окислительных ферментов были обнаружены органические соединения железа. Эти соединения у различных окислительных ферментов оказались одинаковыми по составу. Кроме того, было выяснено, что такие же соединения железа входят и в гемоглобин крови, переносящий кислород в организме человека и животных. Комплексное соединение железа (гем) можно отделить от белка. Однако после этого ни белок, ни гем не проявляют ферментативных свойств. Отсюда следует, что высокая активность и специфичность свойственны только сложной системе, состоящей из белка и гема. В состав различных ферментов входят и комплексные соединения других металлов. В некоторых ферментах обнаружены медь, цинк, марганец, хром и другие элементы. Для некоторых ферментов уже известна первичная структура, т. е. последовательность аминокислот в длинной цепи. Вторичная структура — общий характер спирали, образуемый цепью, приближенно установлена для нескольких ферментов. О третичной структуре, т. е. природе реакционноспособных поверхностных участков молекулы, известно очень мало. [c.149]

    Биологические функции никеля еще мало исследованы. Есть основания считать его микроэлементом. В организмах никель активирует многие ферменты, усиливает синтез серосодержащих аминокислот. При одновременном присутствии железа и никеля улучшается образование гемоглобина в крови животных. [c.431]

    Разница строения цитохромов различных животных состоит в том, что меняется порядок и специфика аминокислот в полипептидных цепях. В клетках растений дрожжей и бактерий найдено около 25 различных цитохромов. Важно то, что в центре молекулы находится атом железа, который [c.338]

    Выход свободных аминокислот при добавлении различных количеств аскорбината железа [c.247]

    Для определения кинетических закономерностей в опытах с добавлением в торфонавозную смесь аскорбината железа и в контрольном эксперименте без использования БАД было проведено математическое моделирование. Результаты моделирования показали, что процесс образования свободных аминокислот с достаточной точностью описывается степенным уравнением, сходным с уравнением химической кинетики дробного порядка  [c.247]

    Мелассная барда содержит 7,5—10% сухих веществ, в том числе около 3% неорганических соединений. Дрожжами усваиваются редуцирующие сахара (0,2—0,5%), глицерин (0,6—0,97о). органические кислоты (1,5—2,5%). аминокислоты, спирты, глюкозиды, органические и неорганические азотсодержащие соединения, соли фосфора, калия, магния, железа, витамины и микроэлементы. [c.368]

    Эти данные о характере замещения аминокислот в а- или в -цепи позволили объяснить природу болезни, которая выражается в том, что атомы железа(II) приобретают способность окисляться до состояния железа(III). Вскрытие молекулярных причин болезни дает возмож- [c.468]

    ВЫСОКИМ выходом получается креатин. Приведенные результаты показывают, что селен может заменять серу в биологически важных соединениях без существенного изменения функций этих соединений. В этом отнощении следует сослаться на более раннюю работу Хорна и Джонса [100], посвященную содержащей селен и железо аминокислоте, встречающейся в злаках, выращенных на почвах, в состав которых входит селен. В настоящее время этот вопрос подвергается дальнейшему изучению [101]. [c.226]


    Одним из наиболее исследованных семейств ферментов являются сери-нопротеазы. Все они предназначены для расщепления полипептидньгх цепей белков по механизму, в котором участвует боковая цепь аминокислоты серина (— Hj—ОН), находящейся в активном центре фермента. Три такие протеазы (трипсин, эластаза и химотрипсин) синтезируются в поджелудочной железе и вьщеляются ею в кишечник, где они превращают содержащиеся в пище белки в аминокислоты, способные всасываться через стенки кишечника. Благодаря возможности легко изолировать эти ферменты и их сравнительно высокой устойчивости их удалось интенсивно исследовать химическими способами еще до того, как стало возможным проведение рентгеноструктурного анализа белков. В настоящее время биохимический и рентгеноструктурный анализы позволили установить достаточно ясную картину функции этих ферментов, иллюстрирующую два аспекта действия любых ферментов каталитический механизм и специфичность к субстрату. [c.318]

    Янтарная кислота НООССНоСНаСООН. Название этой кислоты связано с тем, что она находится в янтаре. Кроме того, янтарная кислота найдена во многих растениях (например, в незрелых ягодах крыжовника, винограда, в свекольном соке, в стеблях ревеня), в буром угле и окаменелом дереве. Она образуется также в больших количествах при некоторых процессах бактериального разложения яблочной и винной кислот и прн брожении белковых веществ (например, казеина). Существенно также ее образование при спиртовом брожении, где она, вероятно, получается из глутаминовой кислоты (одной из аминокислот белка). Щитовидная и зобная железы некоторых животных должны содержать янтарную кислоту. [c.343]

    В природе давно были найдены такие аминокислоты, которые отсутствуют в белковых гидролизатах нли содержатся /з них лишь в очень малых количествах. Енде Кендалл выделил из гормона щитовидной железы близкую тирозину и динодтирозину иодированную аминокислоту тироксин (3, 5, 3, 5 -тетраиодтиронин). Свойство тироксина стимулировать обмен веществ в еще большей С1епени выражено у 3.5,3 -трииодтиронина. Эти соединения успешно изучались Харрингтоном и его школой  [c.373]

    Гетеродет-циклические полипептиды. Инсулин. Антядиабетиче-ческий гормон поджелудочной железы (понижает кровяное давление). Последовательность аминокислот установлена Сейнджером (1949— 1954), см. схему на стр. 394. [c.393]

    ВАЗОПРЕССИН — гормон, выделенный из задней доли гипофиза животных представляет собой циклический пептид, содержащий по 8 остатков -аминокислот. Синтезом установлено строение В. крупного рогатого скота С4вН85М1501а32 и свиней 46HJ5NlзOl2S2. В.— гигроскопические кристаллы хорошо растворим в воде. Вызывает повышение кровяного давления, снижение мочеотделения, сокращение матки, выделение молока молочной железой в период лактации животных. Применяют В. при лечении несахарного диабета и заболеваний, связанных с недостаточностью В. в организме. [c.51]

    ТИРОНИН - аминокислота, производные которой выделены из щитовидной железы и обладают биологической активностью (Б) с.424  [c.273]

    Иапример, фетичная структура молекулы гемоглобина (миоглобина), включающая гем с атомом железа, представляет собой ша[ ообразный клубок (глобулу). Часть пептидной цепи, которая не образует спирали, содержит аминокислоты с отрицательным зарядом. [c.271]

    Попытка обобщить данный материал сделана в настоящей книге, которая представляет собой логическое продолжение первой части, опубликованной ранее отдельным томом и посвященной анализу специфичности и кинетических аспектов действия ферментов на относительно простые субстраты, такие как алифатические и ароматические спирты и альдегиды, производные карбоновых кислот, замещенные аминокислоты и их производные (не выше ди- или три-пептидов). Главное внимание в первой части книги уделялось характеру фермент-субстрат ных взаимодействий на достаточно ограниченных участках активного центра и кинетическим проявлениям этих взаимодействий. В основе первой части книги лежит экспериментальный материал, полученный при изучении специфичности, кинетики и механизмов действия цинк- и кобальткарбоксипеп-тидазы, химотрипсина и трипсина из поджелудочной железы быка, алкогольде-гидрогепаз нз печени человека и лошади и пенициллинамидазы бактериального происхождения. Итогом первой части книги явились обобщение и формулировка кинетико-термодинамических принципов субстратной специфичности ферментативного катализа. [c.4]

    Большое значение имеет комплексообразование железа с биолигандами [2, с. 165—184]. Особенно важен гемоглобин — железосодержащая белковая молекула, выполняющая в крови животных и человека функции переносчика кислорода. Гемоглобин содержит белок глобин и четыре гема , представляющих собой порфириновый комплекс железа (II), где атом железа образует связь с четырьмя атомами азота порфиринового кольца и одну связь с атомом азота гистидина— аминокислоты, входящей в состав б1елка глобина. Шестое место в координационной сфере железа (II) может быть занято молекулярным кислородом О2, а также лигандами типа СО, СЫ и др. Если гемоглобин вступил во взаимодействие, например, с СО, он теряет способность обратимо присоединять О2. В таком случае организм погибает от гипоксии. Этим объясняется высокая токсичность СО, СК - и подобных им лигандов. [c.134]

    Многие пептиды являются гормонами. Так, например, присутствующие в гипофизе гормоны окситоцин и вазопрессин состоят из девяти аминокислотных остатков, т. е. относятся к нанопептидам. Первый влияет на протекание родов у женщин и образование молока, второй контролирует водный обмен в организме. Инсулин, вырабатываемый поджелудочной железой, контролирует метаболизм сахаридов, и его недостаток приводит к диабету. Инсулин состоит из двух цепей, одна из которых содержит 21, а другая — 30 аминокислотных остатков. Цепи соединены серными мостиками —5—5—, которые образуются при окислении групп 5Н двух цистеиновых остатков (при этом получается остаток аминокислоты цистина). Структура инсулина точно известна, и он был синтезирован. Другой пептидный гормон, адренокортикотропный гормон (АКТГ), регулирует синтез стероидных гормонов в коре надпочечников, а соматотропин контролирует рост. Оба этих гормона вырабатываются передней долей гипофиза. К гормонам, образующимся в пищеварительном тракте, относятся, например, секретин и гастрин. Среди пептидов имеются и антибиотики, например бацитрацин (составная часть фрамикоина). [c.191]

    Щитовидная железа человека выделяет гормон ти-реоглобулин, представляющий собой белок с относительно высоким молекулярным весом. В состав молекулы этого гормона входят остатки аминокислот, содержащих атомы иода. Тиреоглобулин регулирует обмен веществ в организме, т. е. химическую работу организма. Еслн щитовидная железа ребенка не выделяет ти-реоглобулина, ребенок перестает расти и остается неполноценным в умственном отношении. [c.465]

    Аскорбинаты в органическую массу вводили из расчета менее 0 1 массового процента. Так как максимальное 1шкопление свободных аминокислот происходило в опытах с добавлением аскорбината железа, была проведена дополнительная серия экспериментов для определения оптимального количества этого биостимулятора, которое следует вност ь в исходную смесь. Результаты показали, что максимальное содержание аминокислот в продукте достигается при добавлении 0.45 грамма аскорбината железа на 1 килограмм субстрата (табл.2). При внесении большего количества БАД наблюдается существенное снижение концентрации свободных аминокислот. Можно предположить, что избыточное содержание катионов железа способно оказывать отрицательное воздействие на микробный метаболизм. [c.247]

    Иод был обнаружен в щитовидной железе еще в 1896 г. в это же время из коралла Сйг сшй ШбИт была выделбна почти неактивная иодсодержащая аминокислота—дииодтирозин. В 1915 г. Кендаллу [c.699]

    Рибонуклеаза. — Одна из рибонуклеаз была выделена в кристаллическом виде из бычьей поджелудочной железы Купит-цем (1940). Панкреатическая рибонуклеаза гидролизует рибонуклео-тидные связи, в которых пиримидиновый нуклеозид этерифицирован по З -положению сахара. Этот фермент содержит 124 остатка аминокислот и четыре дисульфидные связи. Установление первичной структуры этого фермента Муром и Штейном (1960) явилось важной вехой в химии белка. Последовательность частично была определена на окисленной рибонуклеазе, которая при энзиматическом расщеплении дает 24 пептида. Их размеры позволяют непосредственно определить последовательность химическими и ферментативными методами. Наконец, ферментативный гидролиз нативного белка, разделение содержащих цистин пептидов, окисление их до цистеиновых пептидов и аминокислотный анализ последних позволили выяснить, каким образом восемь по-луци1стинооых о статков связаны друг с другом (рис. 27, стр. 740). [c.739]

    Как было показано, интенсивность процесса осернения существенно зависит от наличия в системе ионов железа и при прочих равных условиях будет возрастать по мере удаления от источников сноса. Поэтому в ОВ сапропелевой природы (обычно морские отложения) отношение S/N, как правило, выше, чем в материале гумусовой природы, накопление которого происходит чаще всего в прибрежной или озерноболотной зоне, богатой водорастворенным железом. Так, в отложениях Западной Сибири гумусовый кероген имеет отношение S/N 0,3—0,8, а сапропелевый 2,3-2,8 [8]. Эта мысль находит свое подтверждение также при анализе распределения серы и азота в нефтях Западной Сибири. Оказалось, что величина S/N в нефтях в отложениях от верхнего мела до девона (глубины от 800 до 4000 м) не зависит от возраста и глубины залегания пород и в то же время достаточно четко связана с углеводородным составом нефтей, в частности с составом изопреноидных УВ (см. рис. 23 и табл. 21). Последнее указывает на то, что на формирование состава изопреноидных УВ и содержание серы и азота оказывает влияние одна и та же группа факторов. При рассмотрении механизма эволюции соединений серы и азота от исходной биомассы к нефтематеринскому ОВ наличие этих связей становится очевидным. Поло жительная связь между содержанием в нефтях серы и фитана указывает на то, что интенсивное осернение исходного органического материала происходит в обстановке, способствующей сохранению фитана. Наличие прямой связи между отношением S/N и содержанием асфальто-смолистых веществ и серы закономерно. Неожиданным на первый взгляд кажется наличие положительной связи между S/N и азотом. Казалось бы, чем больше в нефтях азота, тем меньше должно быть отношение S/N. Однако наличие прямой связи свидетельствует о том, что формирование нефтей (вернее, накопление исходного ОВ) с высоким отношением S/N происходит в обстановке, благоприятствующей сохранению азотсодержащих соединений. В этих условиях сохраняются не только достаточно стабильные соединения азота, такие как производные хинолина и акридина, но и такие крайне неустойчивые структуры, как аминокислоты. Анализ данных В.Н. Мозжелиной, В.И. Титова, А.З. Кобловой указывает на то, что максимальные концентрации аминокислот приурочены к нефтям, образовавшимся из ОВ, накопление которого протекало в восстановительной обстановке. [c.81]

    Мет — Асп — Тре — ОН (мол. м. 3485 букв, обозначения см, в ст. а-Аминокислоты). Для сохранения биол, активности Г. необходима структурная целостность его молекулы. Секретируется а-клетками островков поджелудочной железы, В-во, подобное Г,, вырабатывается также в слизистой оболочке кишечника. Г, участвует в регуляции углеводного обмена, является физиол, антагонистом инсулина. Усиливает распад и тормозит синтез гликогена в печени, стимулирует образование глюкозы из аминокислот и секрецию инсулина, вызывает распад жиров. При введении в организм повышает уровень сахара в крови, [c.139]

    HjN — line — Гли — Асн — Лей — Сер — Тре — Цис — Мет — Лей — Гли — е — Тир — Тре — Глн — Асп — Фен — Асн — Лиз — Фен — Гис — Тре — Фен — Про — Глн — Тре — Ала — Лей — Гли — Вал — Гли — Ала — Про — NHj (мол. м. 3600 буквенные обозначения см. в ст. а-Аминокислоты). У животных различается аминокислотными остатками в положениях 10—32. Для проявления биол. действия К. обязательно сохранение всей его пептидной цепи. У большинства млекопитающих К. вырабатывается парафолликулярными или <С -клетками щитовидной железы. К. понижает содержание Са и Р в крови. Действует в осн. на скелет, где тормозит резорбтивные процессы антагонист паратгормона. Выделяют К. из щитовидной железы животных или синтезируют. Примен. в медицине для подавления резорбции костей. [c.236]


Смотреть страницы где упоминается термин Железо с аминокислотами: [c.337]    [c.628]    [c.223]    [c.541]    [c.31]    [c.385]    [c.398]    [c.628]    [c.252]    [c.246]    [c.700]    [c.75]    [c.16]    [c.419]    [c.468]    [c.36]    [c.141]    [c.244]   
Неорганическая биохимия Т 1 _2 (1978) -- [ c.22 , c.123 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматически аминокислоты слюнных железах

Ароматические аминокислоты в белках муки смешанных желез

Железы содержание аминокислот

Основные аминокислоты в железах, смешанных

Слюнные железы аминокислот

Слюнные железы основных аминокислот

Слюнные железы серусодержащих аминокислот

Хлорид железа III аминокислот



© 2025 chem21.info Реклама на сайте