Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сульфирование реагенты

    Хотя причины, обусловливающие образование сульфона, не иссле- довались систематически, тем не менее был сделан ряд поучительных, хотя и случайных наблюдений в этой связи при изучении других стадий реакции сульфирования. Сильные реагенты (SO3, олеум, хлорсульфоновая кислота) способствуют образованию сульфона в противоположность серной кислоте, при применении которой эта побочная реакция проявляется слабо. Применение растворителя снижает возможность образования сульфона, так, например, при реакции бензола с SO3 образуется 30% сульфона [84], тогда как при применении жидкого SO2 в качестве растворителя получается всего лишь от 1 до 5% сульфона [17, 64]. Избыток сульфирующего агента уменьшает образование сульфона, следовательно. [c.524]


    Однако вследствие различных причин серный ангидрид до недавнего времени вызывал лишь незначительный интерес как сульфирующий агент для практического применения. С другой стороны, серная кислота является мягким, но неэффективным сульфирующим агентом. Другие различия между этими двумя реагентами, выраженные в количественных показателях, приведены в табл. 2. Олеум (раствор ЗОз в 100%-ной серной кислоте) по свойствам занимает промежуточное положение между ними и с практической точки зрения является наиболее широко используемым в промышленности реагентом для сульфирования ароматических углеводородов. [c.517]

    При сульфировании определяющей является реакция выделения функциональной группы Х (50з) из промежуточного комплекса ( 1 > 2) при нитровании же или галоидировании—реакция присоединения функциональной группы к ароматическому ядру ( 1 < 2)- Кроме того, при сульфировании можно получить равновесную смесь, содержащую много исходных реагентов или продуктов реакции, что указывает на обратимый характер этой реакции. Другие реакции электрофильного замещения (галоидирование, нитрование) практически необратимы. [c.320]

    Применяемый для сульфирования реагент не должен содержать избытка пиридина, так как даже небольшая примесь его сильно тормозит реакцию сульфирования. Для сульфирования некоторых органических соединений необходимо, чтобы пиридин-сульфотриоксид содержал небольшое количество свободного серного ангидрида (около 0,5%). Такой пиридин-сульфотриоксид в дальнейшем мы будем называть кислый . В 1922 г, пиридин-сульфотриоксид был применен для сульфирования антрацена и нафталина Подробные исследования сульфирующего действия пиридин-сульфотриоксида были опубликованы в 1926 г., причем были предложены две методики сульфирования 1) в водной среде присутствии щелочей и 2) простым нагреванием компо-нен ов. [c.267]

    В промышленности очистку проводили олеумом [30]. При расходе олеума 95 кг на 1 т бензола и содержании тиофена в исходном бензоле 0,12% концентрация тиофена после очистки состав-" ляла 0,00038%. Очистка методом сульфирования проста в аппаратурном оформлении, базируется на применении доступного и дешевого реагента. Показатели процесса могут быть значительно улучшены при двухступенчатой очистке (рис. 44). [c.215]

    Бензол легко и количественно сульфируется серной кислотой при добавлении фтористого бора [108], образующего гидрат с выделяющейся в реакции водой. Сравнительные опыты показали, что без фтористого бора реакция идет лишь на 42%. Аналогичные результаты были получены и с толуолом и нафталином. Однако добавление этого реагента с целью доведения до конца реакции сульфирования экономически невыгодно [c.518]


    Свойства применяемых реагентов и продуктов сульфирования [c.136]

    Продукты сульфирования нефти. Смесь, образующаяся в результате сульфирования нефти, состоит из трех сложных по составу веществ, которые условно можно назвать масла, кислый гудрон, кислотный остаток. Основные целевые продукты внутрипластового сульфирования — сульфокислоты — содержатся в кислом гудроне и в меньшей степени в кислотном остатке. Общий выход водорастворимых сульфокислот при благоприятном соотношении вступающих в реакцию нефти и Н25 04 может достигать 300 кг на 1 т кислоты. Оптимальное соотношение обеспечивается при использовании реагента с 80—85 %-ной концентрацией Н25 04. [c.141]

    В связи с этим проблемы исследования и математического моделирования реакций с участием твердых веществ выходят в настоящее время на одно из ведущих мест среди других проблем химической кинетики. Трудности в решении указанных проблем обусловливаются сложным характером макрокинетики процессов химического превращения сополимеров [Ц. К таким усложняющим факторам можно отнести локализацию реакционной зоны на поверхности раздела фаз твердого реагента и твердого продукта реакции, перемещение этой реакционной зоны вглубь твердого тела, возможность перехода реакции из одной макрокинетической области в другую даже при постоянных значениях температуры системы и концентраций компонентов, участвующих в реакции и т. п. Типичными процессами, обладающими данной спецификой, являются реакции сульфирования и фосфорилирования сополимеров на основе стирола и дивинилбензола. [c.333]

    Специфика реакций сульфирования и фосфорилирования сополимеров состоит в локализации реакционной зоны в области границы раздела твердых фаз исходного вещества (сополимера) и готового продукта (ионита). Такая локализация обусловлена повышенной реакционной способностью твердого реагента в области реакционной зоны. Физические причины этого явления связаны с различными факторами, в частности с анизотропией свойств твердых фаз, каталитическим действием твердого реагента и т. п. [c.333]

    Процессы полимераналогичных превращений сополимеров представляют совокупность явлений различной физической природы, различным образом локализованных в пространстве. В настоящее время не удается четко отделить одну стадию брутто-процесса от других стадий его протекания. В соответствии с этим изменение наблюдаемой скорости процессов сульфирования и фосфорилирования определяется не только процессами образования ядер твердого продукта, изменением величины поверхности границы раздела твердых фаз, но и влиянием диффузионного торможения, изменением концентрации реагентов в зоне реакции. [c.334]

    Описанные побочные реакции, а также окислительные превращения и деструкцию алкильных групп под действием 50з ограничивают оптимальным соотношением реагентов, способом их смешения I главным образом температурой, которая при сульфировании олеумом и 50з обычно изменяется от —10 до 40—60 °С. [c.331]

    Серная кислота как реагент для очистки нефтяных фракций применялась непрерывно с 1852 г, В этом процессе образуются органические сульфонаты они были выделены, но получили промышленное нрименение лишь спустя много лет благодаря двум обстоятельствам. Во-первых, пробудился интерес к возможности полезного применения органических сульфонатов вообш,о, а затем введение в употребление сульфированного касторового масла ( турецкое красное масло ) в тек стильной промышленности в 1875 г. и открытое Твитчелом в 1900 г. каталитическое действие сульфокислот нри гидролизе ншров с образованием жирных кислот и глицерина. Во-вторых, развитие в России производства минеральных белых масел, потребовавшего применения более жесткой кислотной обработки, чем практиковавшаяся до тех пор для легкой очистки естественно, что при этом получились большие количества сульфонатов как побочных продуктов сульфирования. Вскоре было выяснено, что эти сульфокислоты бывают главным образом двух типов растворимые в масле ( красные кислоты ) и не растворимые в масле или растворимые в воде ( зеленые кислоты ). Несколько лет спустя эти продукты начали находить промышленное нрименение как реагенты Твитчелла и как ингредиенты в композициях в процессах обработки кожи и эмульсируемых ( растворимых ) масел. Оба направления продолжали развиваться так быстро, что к началу второй мировой войны спрос на эти продукты, получавшиеся в качестве побочных продуктов, начал превосходить предложение их. Это особенно справедливо в отношенип растворимого в масле типа сульфонатов, применяемых в эмульсионных маслах, в металлообрабатывающей промышленности, в противокоррозийных композициях и как добавки к смазкам для быстроходных двигателей. [c.535]

    Непрерывное сульфирование часто проводят в реакторах с циркуляцией в противотоке двух жидких реагентов (рис. УП-10). В первом аппарате перемешивание осуществляется с помощью механической мешалки, во втором аппарате в этих целях используется кинетическая энергия двух жидкостей, встречающихся в охлажденном пространстве. Реакторы соединены последовательно и в них включены отстойники (рис. УИ-11). [c.326]


    Методы первого типа предусматривают химическое взаимодействие реагента с углеводородами определенного класса (аренами или алкенами), о наличии которые судят по изменению объема или количеству образовавщихся продуктов реакции. К ним относятся, например, нитрование и сульфирование. [c.60]

    При сульфировании ионизация концентрированной серной кислоты протекает с образованием электрофильных реагентов SO3 с электрофильным атомом серы или ЗОзН  [c.151]

Рис. 70. Кинетические кривые сульфирования и алкилирования нафталина (I), 2-метилнафталина (2) и тионафтена (3) при большом избытке реагентов Рис. 70. <a href="/info/6101">Кинетические кривые</a> сульфирования и <a href="/info/9688">алкилирования нафталина</a> (I), 2-<a href="/info/9681">метилнафталина</a> (2) и тионафтена (3) при большом избытке реагентов
    Хотя точный химический состав этих сульфонатов неизвестен, однако подробное изучение важнейших из них — маслорастворимых сульфонатов — показало [61], что они являются смесью веществ, напоминающих длинноценочечные алкилбензолсульфонаты. Для их получения применяются такие же методы сульфирования, как и для получения длинноцепочечных алкилбензолсульфонатов [143], включая применение олеума, паров SO3 [148, 222] и SO3, растворенного в жидком SO 2 [186]. Все эти методы осуществлены в промышленности. Применение в качестве растворителя SO 2 не связано с затратами на растворитель, так как он образуется в результате побочных реакций во время сульфирования. Реагенты и условия реакции, применяемые для сульфирования смазочных масел, в общем, аналогичны реагентам и условиям реакции сульфирования додецилбензола. Однако имеются и отличия, связанные с тем, что додецил-бензол представляет собой относительно чистый материал, в то время как смазочные масла являются смесью углеводородов от очень легко сульфируемых до инертных. Поэтому производители нефтяных сульфонатов уделяют большое внимание выбору сырья и методу его очистки, а также способам отделения продуктов сульфирования от кислого гудрона и непрореагировавшего масла. В отличие от додецилбензола нефтяные углеводороды не образуют ангидридов при сульфировании серным ангидридом. [c.79]

    Получение каталитическая полимеризация пропан-пропилено-вой фракции нефтяных газов, образуются полимеры пропилена алкилирование бензола полимерами пропилена выделение додецилбензольной фракции с последующим сульфированием (реагент—-олеум) нейтрализация алкилбензолсульфо.кислот действием NaOH. [c.249]

    Получение сульфирование (реагент — ЗОз) керосиновых (или газойлевых) фракций или углеводородных дистиллятов, образующихся при термическом разложении каменного угля, сланцев, торфа экстрагирование алкиларилсульфокислот толуоло.м получение Na- oлeй алкил-арилсульфокислот. [c.250]

    Из различных реагентов, рассмотренных в качестве активных промежуточных соединений при реакции сульфирования (HзSOt, йОз", НЗО з, ЗаО в), только концентрация серного ангидрида должна была бы удовлетворять обратно пропорциональной зависимости от квадрата концентрации воды  [c.451]

    Для рассматриваемых реакций жидкая среда, окружающая гранулу сополимера, имеет плотность, соизмеримую с плотностью набухшей полимерной гранулы. Молекулы реагентов, диффундирующих в гранулу, по своим размерам очень громоздки, например ионный радиус хлора, входящего в комплекс А1С14-РС12, является одним из наибольших среди других элементов и равен 1,81 А. В этих условиях скорость движения реагентов к реакционной зоне соизмерима со скоростью перемещения самой зоны. Последнее заставляет сомневаться в корректности гипотезы квазистационарности, принятие которой позволило автору работы [17] получить сравнительно простое выражение для определения длительности процесса в виде конечного соотношения. Поэтому для математического описания процессов сульфирования и фосфорилирования большое значение приобретает вопрос о применимости гипотезы квазистационарности к задачам моделирования макрокипетики таких реакций. [c.335]

    Следует отметить, что полунепрерывные процессы применяются когда затруднен отвод тепла с другой стороны, выделение этого тепла хорошо контролируется изменением расхода реагентов в реакторе. Такие проблемы часто встречаются при пройедении реакций нитрования (толуола, глицерина) и сульфирования серным ангидридом. [c.42]

    Бен-зол и толуол, применяемые в технике, должны быть чисты в смысле содержания нримеси бензина. Ири таких операциях, как шггрование и хлорирование, в меньшей степени сульфирование, присзт ствие значительных количеств бензина, во-иервых, вызывает перерасход реагентов, а во-вторых, загрязняет полученный продукт. Поэтому стараются по возможности свести 9ти примеси бензина до минимума (до 0,5—1%). Во многих случаях большим утешением яат1яется хотя бы точное представление о количестве бензина. [c.404]

    Эффективность метода внутрипластового сульфирования, как и для других физико-химических методов (закачка ПАВ, полимеров), зависит от интенсивности адсорбции реагента на поверхности пористой среды. Величина адсорбции генерированных в пласте ПАВ на месторождениях ТатАССР незначительна [23], что предопределяет минимальные его потери. [c.141]

    Вкделенные углеводороды идентифицировали, т. е. устана-влива,ти их идентичность с соответствующими индивидуальными углеводородами. Многие индивидуальные углеводороды, не нолу-ченный до того времени в чистом виде, были специально синтезированы для сравнения с выделенными из нефти. Нефтяной углеводород считался индивидуальным соединением, если физические свойства его не изменялись и после того, как некоторая часть его удалялась химической обработкой, например путем окисления, сульфирования или нитрования, и если в результате дейст1ия реагентов углеводород нревращался в химическое соединение с характерными свойствами. Методы химической идентификации парафинов и нафтенов, разработанные школой Марковников , отличаются большим разнообразием. Отметим некоторые из пи с. [c.76]

    Сферический слой кислоты с радиусом Н, окружающий гранулу сополимера, является источником сульфоионов, проникающих сквозь пленку тормозящего агента в норы гранулы. Однако в отличие от процесса фосфорилирования этот источник не является постоянным он изменяет свою интенсивность но мере протекания химического превращения сополимера, т. е. жидкая сфера вокруг гранулы служит емкостью, из которой непрерывно поставляется для реакции сульфирования необходимый реагент. Это обусловливает следующую диаграммную структуру жидкой фазы-. [c.348]

    Специфика физикохимии процесса сульфирования и условия его проведения обусловливают решение задачи моделирования процесса при следующих допущениях 1) каждая гранула сополимера в условиях интенсивного перемешивания окружена сферическим слоем жидкой сферы (сферическая ячеечная модель) 2) жидкая среда идеально перемешана 3) гранула сополимера является изотропным телом, свойство массопроводимости которого не меняется по сечению в ходе образования продукта реакции 4) выполняются условия равнодоступности поверхности 5) концентрация реагентов в зоне максимальной скорости химического превращения сополимера в ионит определяется диффузионным транспортом исходного вещества. [c.352]

    Построение диаграммы связи физико-химических стадий процесса с учетом их взаимосвязи, нестацнонарности и принятых допущений выполним в несколько этапов так же, как это делалось при моделировании процесса фосфорилирования 1) разбиваем гранулу сополимера на N зон с характерным размером 6q, каждая из которых, за исключением последней, геометрически представляет собой шаровой слой 2) будем локализовать стадию химического превращения сополимера последовательно в каждой из этих зон (где достигается локальный максимум скорости сульфирования) 3) в качестве критерия перехода реакционной зоны из i-ro в (i + 1)-е положение примем условие полного превращения исходного твердого реагента (сополимера) в i-й зоне gi (t) -v 0. В результате топологическая структура, отражающая взаимосвязь двух стадий, примет вид, изображенный на рис. 5.10. [c.353]

    В последние годы ассортимент реагентов для ионного обмена—их называют теперь ионитами — значительно расширился. Некоторые из ионитов (сульфированные угли и соответствующие ионообменные смолы), называемые катионитами, обладают способностью обменивать содержащиеся в растворе катионы на ионы водорода. Другие (например, продукты конденсации фенилендиаминп с формальдегидом), называемые анионитами, обменивают различные анионы на ионы гидроксила. Последовательное применение ионитов этих двух видов позволяет достигать практически полной деминерализации воды без дистилляции (сами иониты легко регенерируются катиониты — промывгой раствором кислоты, аниониты — растворами щелочи или соды). Иониты применяются также в хроматографическом анализе для разделения близких между собой ионов. [c.373]

    В зависимости от условий защелачивания и соотношения реагентов сульфонаты могут содержать значительное количество оксидов, гидроксидов и карбонатов в тонкодисперсном и коллоидном состоянии. Сульфонаты с избыточной щелочностью (так называемые сверхосновные или многозольные) способны нейтрализовать кислотные соединения, накапливающиеся в масле при работе двигателя. Сульфокислоты для маслорастворимых сульфонатов получают путем сульфирования минеральных масел олеумом или серным ангидридом (газообразным или жидким). [c.67]

    Так, при сульфировании вазелинового дистиллята олеумом, смесью серного ангидрида с воздухом, а также газовоздушной смесью, образующейся при получении серной кислоты контактным способом, выход сульфокислот составляет соответственно 8—10 %, 14 % и 20 %. Серный ангидрид, получаемый отдувкой воздухом из олеума, несмотря на более слабый эффект (по сравнению с газовоздушной смесью из контактной системы) все же довольно широко применяется в качестве сульфирующего реагента. В США для сульфирования используют смесь серного ангидрида с воздухом в соотношении примерно 1 10. На БНЗ имени А. Г. Караева сульфирование нефтепродуктов проводят с помощью газовоздуш-ной смеси, содержащей 7—8% (об.) серного ангидрида [15, с. 71 , [c.71]

    Для алкилирования бензола пропиленом можно использовать серную и фосфорную кислоты, однако жидкая фосфорная кислота промышленного применения не получила, в то время как с 88—90%-й серной кислотой процесс был осуществлен в промышленном масштабе. Алкилирование бензола пропиленом в присутствии серной кислоты идет в жидкой фазе при температуре 35—40°С. При более высокой температуре начинается сульфирование бензола, что крайне нежелательно. Для поддержания компонентов в жидком состоянии реакцию проводят при давлении 1,0—1,2 МПа и мольном отношении бензола к пропилену, равном 4 1. При более низком соотношении реагентов увеличивается выход полиизопропилбензолов. Для увеличения соотношения бензол пропилен алкилирование ведут в двух последовательно установленных реакторах. В первый ре- [c.248]

    Так как вода, выделяюш аяся при сульфировании, разбавляет серную кислоту, то в некоторых случаях (когда сульфирование протекает при температуре, приближаюш ейся к температуре кипения сульфированных продуктов) сульфуратор имеет холодильник с отводом, соединенным с флорентийским сосудом для того, чтобы во время процесса можно было частично отводить воду. Для сохранения заданного температурного режима загрузка реагентов в сульфуратор может осуществляться или сразу, или постепенно. [c.326]

    Основные процессы переработки ароматических углеводородов (нитрование, сульфирование, галогенирование, ацилирование, ал-л<илирование) предполагают замещение водородных атомов в цикле электрофильными группами атакующего реагента, напри- иер  [c.19]

    Как показано в работах [10, 27], скорость превращения тио-нафтеиа возрастает в ряду процессов сульфирование— -алкилирование— -конденсация. И в таком же цррядке уменьшаются относительные потери нафталина. В двух последних процессах необходимо проводить очистку в две стадии на первой нафталин обрабатывать серной кислотой, а на второй —в реакционную смесь вводить алкилирующее непредельное соединение либо формалин (при ином порядке введения реагентов скорость процесса значительно меньше). Вероятно [10, 27], катализаторами обоих процессов. являются не столько се рная кислота, сколько нафталин-сульфокислоты, т. е. их можно рассматривать как сочетание сернокислотной очистки, протекающей с образованием нафталинсульфокислот, и алкилирования либо конденсации при каталитическом действии сульфокислот. Дело, очевидно, не в изменении механизма процесса, а в том, что нафталинсульфокислоты лучше серной кислоты растворимы в нафталине, и скорость процесса увеличивается из-за повышения концентрации катализатора в реакционной массе. [c.290]

    Алканы нефти достаточно инертны ко многим химическим реагентам. Однако найдены условия, при которых они вступают в различные химические реакции. Промышленное значение имеют следующие реакции алканов газо- и жндкофазное окисление, каталитическая изомеризация, сульфирование, сульфоокис-ление. [c.27]


Смотреть страницы где упоминается термин Сульфирование реагенты: [c.132]    [c.115]    [c.115]    [c.249]    [c.275]    [c.319]    [c.321]    [c.78]    [c.369]    [c.72]    [c.219]    [c.140]    [c.12]   
Органические реакции Сб.3 (1951) -- [ c.140 ]




ПОИСК





Смотрите так же термины и статьи:

Моющие реагенты, получение их сульфированием углеводородов

Сульфирование и реакции с использованием других серосодержащих электрофильных реагентов



© 2025 chem21.info Реклама на сайте