Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Продукты сульфирования

    В качестве ингибиторов коррозии рекомендуются также нитрованные масла, сульфонатные присадки, получаемые на основе продуктов сульфирования масла АС-6, а также продукты нейтрализации смеси нитрованных масел с алкилфенолом оксидом бария. [c.183]

    Сульфирование п-изопропилтолуола (п-цимола) исследовано довольно обстоятельно. В старых работах [110] принималось, что в реакционной смеси содержится лишь одна моносульфокислота, и попытка обнаружить второй изомер, предпринятая Якобсеном [111], была безуспешна. Вскоре после этого [112] из продукта сульфирования я-цимола серной кислотой при 100° была выделена бариевая соль другой сульфокислоты, а впоследствии определен и выход последней [113] в указанных условиях (14,6%). При сплавлении с щелочью [114] из нее образуется тимол, и, следовательно, она представляет собой 1-метил-4-изопропилбензол-3-сульфокис-лоту. Было бы весьма интересно выяснить сравнительную эффективность направляющего влияния обеих алкильных групп в о-изо-пропилтолуоле. Тщательное исследование [115, 116] нроцесса сульфирования п-цимола серной кислотой при различных температурах, а также 15%-ным олеумом показало, что максимальный выход 3-сульфокислоты (15,6%) получается при действии серной кислоты, взятой в тройном количестве от веса углеводорода, при 400°. С олеумом при 0° выход этого изомера уменьшался до 2,5%, а выход бариевой соли — главного продукта реакции — достигал 90%. При температурах выше 100° становится заметным образование дисульфокислот. Добавка сульфатов калия, серебра, кобальта или никеля не изменяет выхода 3-сульфокислоты при сульфировании серной кислотой, но сульфаты меди и ртути снижают его с 15,6% соответственно до 9,4 и 9,7%. При сульфировании 1-моля п-цимола 2,8 молями серной кислоты [117] получены результаты, сходные [c.22]


    Получение толуолмоносульфокислот. Сульфированию подвергались многие моноалкилбензолы, но подробно эта реакция изучена только для толуола, Яворский [41] первый получил сульфированием толуола смесь сульфокислот, из которой впоследствии были выделены оба изомера [42], строение которых определено путем сплавления со щелочью [43]. В старых работах [44] большие разногласия вызывал вопрос о содержании в продуктах сульфирования. д<.-толуолсульфокислоты. Более поздние работы указывают на то, что обычно этот изомер образуется в небольшом количестве. Его присутствие доказано выделением 2,5-дисульфокислоты из смеси дисульфокислот, полученной сульфированием толуола [45], а также температурой плавления смесей сульфохлоридов [46], синтезированных из моносульфокислот. Сама л -сульфокислота из продуктов реакций фактически выделена не была. Мета-изомер образуется, повидимому, непосредственно из толуола, а не в результате пере- [c.14]

    Кислые масла нейтрализуют с целью удаления остатков продуктов сульфирования путем щелочной очистки (4 %-ным водным раствором щелочи при 40 — 50 °С) или контактной доочистки отбеливающими землями. При этом щелочная очистка применяется только для маловязких масел. Процесс контактной доочистки осуществляется на типовой установке. [c.277]

    Продукты Сульфирования ароматических Таблица 1 углеводородов исходной нефти  [c.516]

    Состав (в вес. %) продуктов сульфирования толуола различными агентами [c.322]

    Основные сульфонаты обычно получают взаимодействием средних сульфонатов с оксидом или гидроксидом, металла при нагревании. Известен метод, заключающ-ийся в нейтрализации продукта сульфирования водным раствором аммиака или едкого натра (едкого кали) и дальнейшем проведении обменной реакции с водным раствором хлорида кальция или гидроксида щелочноземельного металла при различных температурах [пат. США 3772198 а. с. СССР 526617]. Процесс можно интенсифицировать за счет увеличения скорости реакции и исключения высокотемпературной стабилизации продукта. Полученный таким путем сульфонат может быть превращен в высокощелочной сульфонат с различной степенью щелочности. Обменную реакцию можно проводить в присутствии промоторов — карбоновых кислот С —С4, алкилфенола или алифатического спирта [а. с. СССР 502930, 639873] с применением углеводородных растворителей, низкомолекулярных спиртов С1—С4 или их смесей. [c.78]

    Зависимость изомерного состава продуктов сульфирования нафталина от температуры выражена еще резче при низкиХ температурах получается много а-нафталинсульфокислоты, [c.323]


    За сравнительно немногими исключениями щелочные соли сульфокислот хорошо растворимы в воде растворимость понижается при введении в молекулу высокомолекулярных ароматических групп и повышается с увеличением числа сульфогрупп. Щелочные соли обычно выделяются из раствора путем высаливания их избытком какой-нибудь легко растворимой соли соответствующего щелочного металла. Более общий способ выделения соли сульфокислоты и щелочного металла заключается в нейтрализации продукта сульфирования известью или другим основанием, дающим нерастворимый осадок с ионом 804" с последующим отфильтровыванием и обработкой фильтрата карбонатом или сульфатом щелочного металла. Фильтрат, полученный от этой операции, упаривается, пока из него не начнет выкристаллизовываться щелочная соль сульфокислоты. Свинцовые соли и соли щелочноземельных металлов сульфокислот, вообще говоря, хорошо растворимы в воде, но соли изомерных кислот часто сильно различаются между собой по растворимости, что дает возможность разделять продукты сульфирования посредством фракционированной кристаллизации кальциевых, бариевых или свинцовых солей. [c.10]

Рис. 112. Зависимость состава продуктов сульфирования нафталина от температуры. Рис. 112. Зависимость состава <a href="/info/411991">продуктов сульфирования</a> нафталина от температуры.
    Свойства применяемых реагентов и продуктов сульфирования [c.136]

    Продукты сульфирования нефти. Смесь, образующаяся в результате сульфирования нефти, состоит из трех сложных по составу веществ, которые условно можно назвать масла, кислый гудрон, кислотный остаток. Основные целевые продукты внутрипластового сульфирования — сульфокислоты — содержатся в кислом гудроне и в меньшей степени в кислотном остатке. Общий выход водорастворимых сульфокислот при благоприятном соотношении вступающих в реакцию нефти и Н25 04 может достигать 300 кг на 1 т кислоты. Оптимальное соотношение обеспечивается при использовании реагента с 80—85 %-ной концентрацией Н25 04. [c.141]

    Диметилсульфат медленно реагирует с фенолом [368] при температуре 100—120°, выделяя диметиловый эфир, наряду с образованием анизола и продуктов сульфирования. Возможно, что в этом случае протекают указанные ниже реакции  [c.65]

    Присадка ПМС (ПМСя) — многозольная сульфонатная присадка, содержащая избыток металла (3,5—5-кратный против теоретического). Технология получения этой присадки разработана во ВНИИ НП [2, с. 158]. Сырьем служили дистиллятные масла из сернистых нефтей и нейтральные продукты сульфирования, выделенные при получении белых масел из несернистых нефтей. В качестве селективного растворителя и промотора реакции использовали фенол. Испытание присадки ПМСя в смеси с различными маслами на двигателях показали ее высокую диспергирующую и нейтрализующую эффективность. [c.82]

    Присадку ВНИИ НП-370 получают в промышленном масштабе. Вначале алкилируют фенол полимердистиллятом в присутствии продуктов сульфирования фенола, затем алкилфенол, содержащий сульфокислоты, нейтрализуют водной суспензией гидроксида кальция, после чего нейтральный продукт конденсируют с формальдегидом [21, с. 20]. Получаемая по этой схеме присадка имеет недостаточно высокую зольность и, следовательно, невысокие нейтрализующие и противокоррозионные свойства. С целью улучшения качества присадки ВНИИ НП-370 проводились исследования по подбору условий, обеспечивающих полноту реакции нейтрализации, и использованию в качестве сырья промышленного алкилфенола, синтезированного на катионите КУ-2 [251]. [c.200]

    Серная кислота является активным конденсирующим агентом при взаимодействии фенола с ацетоном. Однако концентрированная кислота обладает нежелательным сульфирующим действием на диоксиарилалканы и другие оксисоединения и дает незначительную концентрацию протонов. Так, например, при проведении реакции с 96%-НОЙ НаЗО дифенилолпропан не образовывался даже за длительное время (2 суток). Реакционная масса содержала продукт сульфирования фенола. [c.108]

    В свежей серной кислоте изобутан растворяется хуже, чем в кислоте, разбавленной небольшим количеством продуктов сульфирования и окисления ненасыщенных углеводородов и диенов, образующихся в результате побочных реакций и растворяющихся в кислоте. Поэтому результаты алкилирования в первые часы работы свежей кислоты постепенно улучшаются и достигают максимальных при концентрации кислоты 95—96%. Расход серной кислоты в зависимости от параметров процесса составляет 60— 250 кг/м алкилата. [c.181]


    При повышении температуры очистки с 50 до 80°С длительность осаждения кислого гудрона при естественном отстое сокращается в 3-4 раза, а при электроосаждении - в 1,5-2 раза. Это объясняется увеличением разности плотностей дисперсной фазы и дисперсионной среды, а также понижением вязкости парафина, При температуре очистки парафина выше 80°0 наблюдается полимеризация продуктов сульфирования. Следовательно, деароматизацию жидких парафинов олеумом целесообразно проводить при Ь0-80°С. При очистке жидких парафинов олеумом, содержащим 2-8 свободного [c.214]

    Реакционная вода содержит жирные спирты, продукты сульфирования и сульфат-ион Сточные воды загрязнены органическими кислотами, формальдегидом, ацетоном, метанолом, высшими спиртами Фузельные воды с растворенными углеводородами и альдегидами Сточные воды от промывки газов загрязнены взвешенными веществами, сульфатами, кислыми солями угольной кислоты, сероводородом и фенолами Сточные воды содержат каустическую соду, углеводороды, фосфорную кислоту, хлористый алюминий и Др. [c.331]

    Серная кислота как реагент для очистки нефтяных фракций применялась непрерывно с 1852 г, В этом процессе образуются органические сульфонаты они были выделены, но получили промышленное нрименение лишь спустя много лет благодаря двум обстоятельствам. Во-первых, пробудился интерес к возможности полезного применения органических сульфонатов вообш,о, а затем введение в употребление сульфированного касторового масла ( турецкое красное масло ) в тек стильной промышленности в 1875 г. и открытое Твитчелом в 1900 г. каталитическое действие сульфокислот нри гидролизе ншров с образованием жирных кислот и глицерина. Во-вторых, развитие в России производства минеральных белых масел, потребовавшего применения более жесткой кислотной обработки, чем практиковавшаяся до тех пор для легкой очистки естественно, что при этом получились большие количества сульфонатов как побочных продуктов сульфирования. Вскоре было выяснено, что эти сульфокислоты бывают главным образом двух типов растворимые в масле ( красные кислоты ) и не растворимые в масле или растворимые в воде ( зеленые кислоты ). Несколько лет спустя эти продукты начали находить промышленное нрименение как реагенты Твитчелла и как ингредиенты в композициях в процессах обработки кожи и эмульсируемых ( растворимых ) масел. Оба направления продолжали развиваться так быстро, что к началу второй мировой войны спрос на эти продукты, получавшиеся в качестве побочных продуктов, начал превосходить предложение их. Это особенно справедливо в отношенип растворимого в масле типа сульфонатов, применяемых в эмульсионных маслах, в металлообрабатывающей промышленности, в противокоррозийных композициях и как добавки к смазкам для быстроходных двигателей. [c.535]

    Кроме того, создаются дополнительные затруднения с использованием большого количества продуктов сульфирования углеводородов, получающихся в виде отходов. Все это делает метод кислотной очистки мало приемлемым. [c.91]

    В литературе имеется много данных по исследованию процессов сернокислотной очистки, по химической природе и свойствам продуктов сульфирования, удаляемых из нефтепродуктов [10-12]. [c.116]

    Принципиально для получения систем, подобных указанным, можно использовать ПАВ различных классов, однако для получения мицеллярных растворов в настоящее время применяются нефтяные сульфонаты — продукты сульфирования тяжелых фракций нефти. [c.168]

    Метантрисульфокислота синтезирована в небольших количествах сульфированием кальциевой соли метилсерной кислоты [488 или метионовой кислоты [489] дымящей серной кислотой. При действии на ацетанилид [434, 489, 490] или ацетамид дымящей серной кислоты, содержащей 35% серного ангидрида, выход продукта сульфирования, выделенного в виде средней калиевой соли, составляет 57%. В тех же условиях метантрисульфокислота получена с небольшим выходом из анилида янтарной кислоты. [c.188]

    В незначительном количестве она выделена из продукта сульфирования л -ксилола серной кислотой при комнатной температуре [86]. [c.19]

    Возможна также дегидрогенизация боковой цепи с целью получения углеводорода типа стирола. Дегидрогенизация -цимола (легко доступного как побочного продукта сульфирования древесины канадской сосны или полученного из природных терпенов) в 4,а-диметилстирол проводилась при температуре от 482 до. 593 над катализатором окись хрома на окиси алюминия. При 50%-ном превращении за один проход были получены замещенные стиролов с выходом 80%. Выходы были нескслько повышены путем разбавления исходного сырья бензолом [19]. [c.488]

    Хлорсульфоновая кислота. Реакция хлорсульфоновой кислоты с парафинами и циклопарафинами аналогична реакции с дымящей серной кислотой. Парафины с разветвленными цепями реагируют с хлорсульфоновой кислотой при обычных температурах гораздо легче. Изопентан и 2,3-диметилбутан реагируют легко, давая хлористый водород и продукты сульфирования [2], церезин значительно более активно взаимодействует с этим реактивом, чем парафин. Хлорсульфоновая кислота применяется для очистки нормальных парафинов благодаря реакции ее с изомерами, имеющими разветвленную цепь [79].f [c.99]

    В ранней работе Шестаков и Рабинович [49] показали, что Средняя формула продуктов сульфирования медицинского масла 20H27SO3H. [c.536]

    Нейтрализация кислых продуктов сернокислотной очист-к и. После обработки олеумом или серной кислотой и отделения кислого гудрона нидкие парафины содержат небольшое количество продуктов сульфирования. Для удаления этих веществ кислые парафины нейтрализуют щелочью и промывают водой. При этом происходит растворение и связнвание сульфокислот ароматического или нафтенового ряда, а также свободной серной кислоты в виде средних эфиров и эфиросодержащих кислот. [c.218]

    Сульфокислоты — продукты сульфирования различных углеводородов, включающие сульфогруппу —ЗОдН. В технике сульфирование дистиллята проводят, обрабатывая его либо дымящей серной кислотой либо серным ангидридом. Образующиеся при этом сульфокислоты находятся в растворенном срстоянии в дистилляте и частично выпадают вместе с кислым г5 дроном. Так как сульфокислоты хорошо растворимы в воде, то их извлекают из кислого дистиллята, обрабатывая его водой водные вытяжки сульфокислот выпаривают. [c.31]

    Одним из источников получения маслорастворнмых сульфонатов являются побочные продукты, образующиеся при глубокой очистке минеральных масел олеумом. Сульфокислоты, полученные при сульфировании этих высококипящих нефтяных дистиллятов, являются сложными смесями производных ароматических и нафтеновых углеводородов и содержат по меньшей мере одну сульфо-группу, присоединенную к атому углерода. Из продуктов сульфирования сульфокислоты могут быть выделены при обработке водным раствором уксусной кислоты, спирта или эфира, фенола и др. Для получения чистых маслорастворимых сульфонатов нейтрализованные сульфокислоты обычно подвергают экстракции водным раствором спирта [15, с. 69]. [c.69]

    Для консервации (наружной и внутренней) деталей двигателей и других механизмов разработана смазка НГ-203, которую мол<но использовать также в качестве ингибитора коррозии, добавляемого к сернистым топливам, и как моющую присадку к моторным маслам. Эту смазку приготавливают из концентрата, получаемого сульфированием очищенного минерального масла газообразным серным айгидрпдом в растворе жидкого сернистого ангидрида и нейтрализацией продукта сульфирования гидроксидом кальция. [c.183]

    Деэмульгатор НЧК является технической смесью продуктов сульфирования, смолистых веществ, сульфатов и др. Деэмульгирующими свойствами в НЧК обладают в основном соли водорастворимых суль-фонафтеновых кислот — анионоактивные вещества. Химический состав сульфонафтеновых кислот, содержащихся в НЧК, разнообразен и зависит от состава и качества дистиллятов, взятых для сульфирования. [c.139]

    При 50—70 °С сульфирование нафталина дает преимущественно Ьнафталинсульфокислоту. При повышении температуры образуется смесь сульфокислот, а при 160 °С 2-нафталинсульфокисло-та оказывается основным продуктом сульфирования [30, с. 66 31, с. 125]. Характер ориентации при сульфировании метилнафталина такой же [27, 32, 33]  [c.28]

    Продуктами сульфирования являются бензолсульфокислота, тиофенсульфокислота и вода. Бензолсульфокислота не влияет на глубину очистки бензола от тиофена. Бода же снижает сульфирующую способность кислоты и способствует гидролизу образовавшейся тиофенсульфокислоты с выделением свободного тиофена, т. е. вторичному загрязнению уже очищенного продукта. [c.214]

    Несмотря на то, что практическое значение простых алифатических сульфокислот в настоящее время сравнительно невелико, они хорошо описаны в литературе, и некоторые из их производных являются интересными с промышленной точки зрения. Наибольшее внимание было уделено исследованию производных метана, этана и карбоновых кислот. Эфиры, полученные из жирных кислот и 2-01 иэтан-1-сульфокислоты (изэтионовой кислоты), а также амиды 2-амипоэтан-1-сульфокислоты (таурина) нашли применение в качестве детергентов и смачивающих агентов. Сульфокислоты присутствуют в некотором количестве в сульфированных маслах , используемых для различных целей в текстильной промышленности. Строение продуктов сульфирования такого типа в большинстве случаев неизвестно, в связи с чем эта область богата интересными возможностями для исследования. Существующие данные носят главным образом эмпирический характер, и представляется затруднительным отличить факты от предположений в обширной патентной литературе. [c.105]

    Для указанной цели предлагаются -также ацильные производные 3-амино-2-метоксип )онап-1-сульфокислоты [2666] и продукты сульфирования высших хлорированных олефинов [266г]. [c.150]

    Как указано ниже, продуктами сульфирования ненасыщенных жиров и масел являются сульфокислоты неизвестного строения, которые, повидимому, содержат оксигрунпы. [c.151]

    Подробные сведения о продуктах сульфирования диалкилбензолов с неодинаковыми алкильными радикалами дали бы возможность исследовать направляющее влияние алкилов. К сожалению, строение образовавшихся изомерных сульфокислот в большинстве случаев не определялось, а там, где оно выяснено, нет данных об относительном количестве разных изомеров (за исключением л-цимола). Имеющиеся данные указывают на то, что метильная группа обладает более сильным направляющим в орто-положение влиянием, чем н-пропильная или изопропильная, и что это разлв-чие еще больше при сравнении метила с более высокомолекулярными алкильными группами. На ряде реакций показано, что из двух изомерных сульфокислот значительно менее растворимую [c.21]

    Направляющее влияние некоторых групп, содержащихся в ароматическом ядре, при сульфировании и при других реакциях замещения неодинаково. Так, при сульфировании галоидобензолов образуются 100%-ные тгара-соединения, а при нитровании — смесь орто- и иара-соединений. Недавно опубликованы [1] подробные сравнительные данные о направляющем влиянии различных групп в реакциях нитрования и сульфирования. Во многих случаях изменение температуры реакции меняет положение вступающей в ядро сульфогруппы или ведет к перегруппировке первоначального продукта реакции с образованием более устойчивого изомера. Это особенно относится к нафталиновому ряду. Сульфат ртути также оказывает сильное влияние на строение продукта сульфирования, что заметно при сульфировании соединений, содержащих в ароматическом радикале карбонильную или карбоксильную группу. Этот эффект, вероятно, вызван меркурированием с последующей заменой ртути на сульфогруппы при действии избытка серного [c.8]

    Многие алкилбензолсульфокислоты запатентованы в качестве детергентов и эмульгаторов [76]. Продажные препараты обычно представляют собой смеси, получаемые сульфированием вторичных алкилбензолов, которые в свою очередь синтезируются взаимодействием смеси олефинов или алкилхлоридов с бензолом в присутствии катализатора (обычно хлористого алюминия или серной кислоты). Исключением является продукт сульфирования лаурил-бензола [76 б], получаемого восстановлением лаурофенона. В этом случае сульфирование производится хлорсульфоновой кислотой или олеумом в дихлорэтановом растворе. Алкильная группа может содержать заместители, как, например, в продукте сульфирования [76 в] соединений, образующихся в результате конденсации олеина [76 в] или олеиновой кислоты [76 е] с бензолом. [c.18]

    Сульфирование других диалкилбензолов приводит к сульфокислотам, сходным по строению с получаемыми из ксилолов, однако из продуктов сульфирования / -диалкилбензолов не удалось выделить двух сульфокислот, образующихся в случае сульфирования / -ксилола. Строение полученных из диалкилбензолов сульфокислот установлено независимыми синтезами, но оно может быть выяснено по аналогии с соответствующими производными ксилола. Это замечание относк хя к моносульфокислотам о-[94], / -[95] и [c.20]

    Строение многих сульфокислот, полученных из алкилгалойдо-бензолов, к сожалению, неизвестно. Таковы, например, соединения, синтезированные из пятнадцати дигалоидотолуолов [195, 196]. В табл. 3, в которой сведены имеющиеся данные по продуктам сульфирования алкилгалоидобензолов, для сульфокислот неизвестного строения принято наиболее вероятное строение и рядом с предполагаемым положением сульфогруппы поставлен вопросительный знак. [c.34]

    Сульфирование алкилбензойных кислот. о-[239 д, 258, 259 п- [260] Толуиловые кислоты дают только по одному продукту сульфирования, причем в первой замещение происходит в пара-положение, а во второй — в орлго-положение к метилу. При нагревании л1-толуиловой кислоты [261] с серной кислотой до 180° образуются 3 изомерные сульфокислоты главным продуктом реакции является З-сульфо-5-метилбензойная кислота, однако образуются также 2- и 4-изомеры. о-Толуиловая кислота может быть превращена в 3,5-дисульфо-2-метилбензойную кислоту нагреванием с пиросерной кислотой [258]. [c.41]


Смотреть страницы где упоминается термин Продукты сульфирования: [c.322]    [c.323]    [c.182]    [c.106]    [c.149]    [c.17]    [c.19]   
Смотреть главы в:

Химия нефти -> Продукты сульфирования

Собрание трудов Том 3 -> Продукты сульфирования




ПОИСК







© 2025 chem21.info Реклама на сайте