Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Парафины идентификация

    Мы остановились на тех работах, авторы которых для определения и идентификации н-парафинов в нефтях пользовались карбамидом. Работы других авторов по идентификации н-парафиновых углеводородов иными методами из-за их многочисленности не приводим. [c.125]

    Для определения точек плавления применяются различные методы [225]. Для идентификации пригодным является капиллярный метод [226]. Для чистого соединения точка плавления, получающаяся таким образом, будет достаточно точной, для нечистых веществ точка плавления находится в некотором температурном интервале. Измерение точки плавления не может быть применено для идентификации более высоких нормальных парафинов, так как они образуют настолько идеальные растворы, что точка плавления является линейной функцией состава. При этом не образуется эвтектики, и смеси в широком интервале ведут себя как чистые жидкости. [c.193]


    Хроматографический анализ парафинов проводят при 250— 450°С. Пробу вводят в разделительную колонку, где она распределяется по стационарной фазе, находящейся на носителе, компоненты выводят из колонки газом-носителем — гелием или водородом. В качестве стационарной фазы используют асфальтены, силиконовые масла, каучуки и др. Для идентификации пиков и количественного определения содержания углеводородов в исследуемую пробу вводят индивидуальные углеводороды. На хроматографе удается определить состав парафинов до С55. [c.34]

    Для подтверждения высказанных предположений о характере цветообразующих компонентов парафинов планируется провести их выделение на специальных селективных адсорбентах, идентификацию и количественную оценку. [c.115]

    Для идентификации какого-либо соединения снимают хроматограмму этого соединения, а также хроматограммы двух нормальных парафинов с известным числом атомов углерода в молекуле, время удерживания одного из которых меньше, а другого больше, чем время удерживания исследуемого соединения на той же жидкой фазе и в тех же условиях. Определяют по полученным данным логарифмический или линейный индекс удерживания и сопоставляют его с табличными данными. [c.191]

    При анализе смеси парафиновых и олефиновых углеводородов можно смесь разделить на хроматографической колонке и получить хроматограмму. Для облегчения идентификации соединений целесообразно удалить олефиновые углеводороды. Поэтому продукты хроматографического разделения по выходе из детектора направляют в реактор с углем, пропитанным бромом. В реакторе олефи-ны бромируются и сорбируются углем, а парафины проходят реактор без изменения. Если на выходе из реактора установить второй детектор, то на второй хроматограмме будут выписаны лишь пики парафинов. [c.199]

    Третий способ идентификации — по индексам удерживания — был предложен Ковачем. Этот способ получил в последнее время наибольшее применение. Суть его заключается в использовании линейной зависимости между логарифмами объемов удерживания и числом атомов С нормальных парафинов как шкалы индексов /. В этой шкале индексы удерживания нормальных углеводородов равны числу углеродных атомов, умноженному на 100, и характеризуют адсорбируемость или растворимость. Находят индексы графически или по формуле  [c.120]

    Иногда для идентификации соединений смеси целесообразно провести перед разделением химическое превращение пробы (ср. гл. VII, разд. 4 и 8), которое приводит к образованию продуктов, более удобных для хроматографирования. Если, например, пробу, хроматограмма которой приведена на рис. 38, обработать охлажденной 50%-ной серной кислотой, то все ненасыщенные соединения удаляются и на хроматограмме получают только пики парафинов (на рис. 38 эти пики заштрихованы). Включение платинированного алюминиевого капилляра длиной 6 м перед колонкой и применение водорода в качестве газа-носителя позволяют полностью (до парафинов) гидрировать олефины, содержащиеся в этой пробе. Пики парафинов, полу- [c.354]


    По химическому составу парафин является сложной смесью углеводородов. Полное разделение его на компоненты и идентификация их окончательно не завершены. [c.60]

    Для идентификации химических соединений наибольшую роль играют те части спектра, которые находятся за пределами его видимой области, а именно ультрафиолетовая и инфракрасная области. Принципы идентификации веществ путем их спектрофотометрирования в этих областях ничем не отличаются от описанного выше для видимой области каждое вещество обладает совершенно своеобразным поглощением или пропусканием на различных длинах волн. Более того, инфракрасный анализ позволяет установить наличие отдельных групп атомов в молекулах исследуемого вещества. Такая возможность особенно ценна в том случае, когда пытаются синтезировать вещество с большими молекулами из веществ с меньшими молекулами, представляющими собой части больших хочется иметь уверенность, что присоединяемые части действительно входят в новые молекулы. На рис. 2.8 изображен спектр инфракрасного поглощения додекана, молекулы которого подобны молекулам обычного парафина, но меньше их по размеру. В той части инфракрасного спектра, которая обычно используется для указанной цели (в интервале длин волн от 2 до 16 мкм), додекан дает четыре полосы поглощения. Не входя пока что в детали [c.25]

    Беглый просмотр приведенных данных (в том числе — в табл. 7) выявляет значительное число белых пятен не только в определении кристаллической структуры н-парафинов, но и в идентификации их полиморфной принадлежности порошковыми методами. Особенно это касается четных пограничных и всех длинноцепочечных гомологов. Тем не менее, известные к настоящему времени данные об индивидуальных гомологах н-парафинов позволяют выделить среди них следующие группы  [c.45]

    ПРИРОДНЫЕ ПАРАФИНЫ СОСТАВ, ИДЕНТИФИКАЦИЯ, ТЕРМИЧЕСКИЕ ДЕФОРМАЦИИ И ПОЛИМОРФНЫЕ ПРЕВРАЩЕНИЯ [c.245]

    Глава 6. Природные парафины состав, идентификация, [c.345]

    Инфракрасная (ИК) спектроскопия используется в различных областях науки, и в каждой из них придается- этому термину различный смысл. Для химика-аналитика это удобный метод решения таких задач, как, например, определение пяти изомеров гексахлорциклогексана, качества парафина, смолы, полимера, эмульгатора в эмульсии для полировки, опознание страны, из которой вывезен контрабандный опиум. Физику ИК-спектроскопия представляется методом исследования энергетических уровней в полупроводниках или определения межатомных расстояний в молекулах. Она может быть также полезна и при измерении температуры пламени ракетного двигателя. Для химика-органика это метод идентификации органических соединений, позволяющий выявлять функциональные группы в молекулах и следить за ходом химических реакций. Для биолога ИК-спектроскопия - перспективный метод изучения транспорта биологически активных веществ в живой ткани, ключ к структуре многих естественных антибиотиков и путь познания строения клетки. Физикохимику метод позволяет приблизиться к пониманию механизма гетерогенного катализа и кинетики сложных реакций. Он служит дополнительным источником информации при расшифровке структуры кристаллов. В этих и многих других областях знания ИК-спектроскопия служит исследователям мощным средством изучения тайн вещества. Вероятно, справедливо будет сказать, что из всех инструментальных методов ИК-спектроскопия наиболее универсальна. [c.9]

    Анализ покрытий часто осложнен тем, что некоторые ингредиенты сами являются сложными смесями, такими, как шеллак, канифоль, парафин, натуральные смолы. При идеальном разделении эти смеси должны быть отделены как цеЛое от других сходных сложных компонентов. При идентификации таких материалов стандартные спектры полезны, но часто и неоднозначны. Крайне полезно знание сходных рецептур и их ожидаемых компонентов. Их можно найти в нескольких работах [189, 198, 249]. [c.202]

    Для построения графиков идентификации были определены при разных температурах удерживаемые объемы чистых углеводородов различных гомологических рядов — парафинов, изопарафинов и олефинов. График идентификации, снятый на колонке, содержащей хинолин в качестве жидкой фазы, показан на рис. 5. [c.87]

    При прохождении соединения над горячим катализатором оно гидрируется до соответствующего парафина (углеродного скелета) или до следующего низшего гомолога. Образующиеся в результате углеводороды поступают в газовый хроматограф и идентифицируются по временам удерживания. При наличии более совершенного детектора, типа масс-спектрометра, идентификация может быть более однозначной. Таким методом можно анализировать соединения в количествах порядка 1 мкг. [c.434]

    Лучшим методом анализа растворителей является метод газожидкостной хроматографии (ГЖХ) [261]. Разработаны методики, облегчающие идентификацию по объемам удерживания. Джемс и Мартин использовали при анализе кислот нормального и изостроения связь между логарифмом объема удержания и числом углеродных атомов. Аналогичное соотношение положено в основу анализа жирных кислот, нормальных парафинов, спиртов и кетонов [262]. Идентификацию углеводородов проводят методом ГЖХ с применением индексов удерживания [263].  [c.148]


    Из исходных остатков методом жидкостной хроматографии были выделены групповые компоненты, идентификация которых проводилась по коэффициенту преломления п 2 [6]. Фракцию -с П2 ниже 1,49 относили к парафино-нафтеновым углеводородам с от 1,49 до 1,53 — к моноциклическим с от 1,53 до 1,59 — к бициклическим с выше 1,59 — к полицикличе--ским углеводородам. Смолы отделяли визуально. Кроме того, были выделены нерастворимые в изооктане асфальтены и нерастворимые в бензоле карбоиды. Для выделенных компонентов определяли плотность, элементный состав и содержание углерода в ароматических кольцах (методом ИК-спектроскопии). Качество групповых компонентов представлено в табл. 2. [c.54]

    Тсношиые данные о составе тяжелых фракций. Принято считать и экспериментально установлено, что число компонентов нефтяной фракции тем бэльше, чем выше ее температура кипения. Кроме того, как показано ниже, различия между основными классами углеводородов с повышением температуры кипения выражаются все менее резко. Поэтому тяжелые фракции обладают чрезвычайно сложным состав эм, изучение которого с целью идентификации индивидуальных компонентов является довольно безнадежным делом, имеющим малую практическую ценность. Попытки выделить индивидуальные углеводороды из фракций смазочных масел до сих пор были безуспешными, если не считать к-парафинов и немногих высококонденсированных полиароматических углеводородов число компонентов настолько велико, что для их изучения необходима очень тщательная и весьма трудоемкая работа. [c.363]

    В ранних работах, посвященных циклопропановым углеводородам, встречалось много противоречий и неточностей ввиду отсутствия ясного представления об этой реакции и о методах приготовления необходимых дибромидов. Только в нескольких случаях были получены углеводороды высокой степени чистоты при этом иекоторые углеводороды были неправильно идентифицированы. Часто не принималось никаких мер против образования примесей (слефины или парафины) я реакции, приводящие к образованию примесей, считались типичными ддя получения цикло-пропановых углеводородов. Разделение и идентификация индивидуальных геометрических изомеров фактически игнорировались. [c.432]

    Вкделенные углеводороды идентифицировали, т. е. устана-влива,ти их идентичность с соответствующими индивидуальными углеводородами. Многие индивидуальные углеводороды, не нолу-ченный до того времени в чистом виде, были специально синтезированы для сравнения с выделенными из нефти. Нефтяной углеводород считался индивидуальным соединением, если физические свойства его не изменялись и после того, как некоторая часть его удалялась химической обработкой, например путем окисления, сульфирования или нитрования, и если в результате дейст1ия реагентов углеводород нревращался в химическое соединение с характерными свойствами. Методы химической идентификации парафинов и нафтенов, разработанные школой Марковников , отличаются большим разнообразием. Отметим некоторые из пи с. [c.76]

    Дальнейшее развитие метод выделения и идентификации углеводородов нашел в работах Н. Д. Зелинского, который показал, что при пропускании смеси нафтенов и парафинов над платиновым, палладиевым пли никелевым катализатором при температура около 300° С происходит дегидрогенизация шестичленных нафгенов с образованием ароматических углеводородов [15]. Известно, что реакция эта обратима, и при температурах 120 — [c.79]

    Составной частью. мониторинга трубопроводных систе.м является идентификация или диагностирование технологического режима их эксплуатации. Снижение эффективности эксплуатации трубопроводных коммуникаций обусловлено рядом причин как закономерного, так и случайного характера выпадение (растворение) парафина и смол, образование застойных зон, смена реологических и физических свойств перекачиваемой среды вследствие изменения внешних условий, замещения продуктов перекачки или нарушение сплошности потока из-за деэ.мульгации компонентов, сепарации газа или кристаллизации парафинов, деформации труб, сбои работы насосного оборудования и т.д. [c.152]

    Для соответствия требованиям специфичных условий эксплуатации, покупатель, продавец и производитель могут согласовать изменение конкретного предельного значения Эти сорта должны содержать достаточное количество 1,4-диалкилантрахинона (голубого красителя) для целей идентификации. Когда температура помутнения указывается ниже минус 12°С, минимальная температура вспышки должна быть 38 С минимальная вязкость топлива ограничивается 1.7 сСт, а требование 90% по температуре выкипания снимается В отдельных регионах США и других странах предельное содережание серы может отличаться. Для работы при пониженной температуре и на больших высотах может потребоваться топливо с более высокими цетановыми числами Нереально оговорить низкотемпературные свойства топлива, которые обеспечили бы их удовлетворительное поведение в широком диапазоне температур В большинстве случаев приемлемые результаты достигаются, если температура помутнения (появления кристаллов парафина) на6°С превышает нижнюю границу температур окружающей среды, наблюдаемых в местности, где топливо будет применяться, в 10% случаев [c.92]

    Выделенные в чистом виде н-парафины или изопарафнны могут быть идентифицированы с помощью газо-жидкостной хро.матогра-фии для окончательной идентификации необходимо получить в чистом виде индивидуальные парафиновые углеводороды с помощью препаративной хроматографии, либо четкой ректификации. Индивидуальные углеводороды анализируются определяются их простые и комбинированные константы, проводится элементны анализ, иногда спектральный анализ если это необходимо, проводят хи.мическую идентификацию. Классические примеры химической идентификации можно найти в работах В. В. Марковникова но исследованию кавказских нефтей. Так пз фракции 80—82° бакинской нефти Марковников выделил химическим путем метановый углеводород, общей формулы СтН , константы которого были близки к константам триметилпропилметана (/кип 78,5—79 "). Этот углеводород был идентифицирован следующим образом. [c.57]

    Нормальный парафин 1. 1-парафин моноразвет-вленный г-Парафины, нафтены с разветвленными цепями г-Парафины, нафтены ароматические 1. к-Парафи-ны очищенные Окончательное разделение и идентификация - [c.250]

    Отсюда следует практическая невозможность полной идентификации компонентов МСС традиционными элюэнтными хроматографическими методами, так как отдельные фракции МСС перекрываются по временам удерживания. Это доказано для нефтяных фракций [14] по специально разработанной методике, использующую информацию по хроматографическим временам удерживания температурам кипения модельных соединений. Установлено, что при разделении углеводородных смесей на силикагеле алкилнафтеновые и ароматические фракции перекрываются с парафино-нафтеновыми. Еще более сильное перекрывание внутри отдельных классов opгaничe кIix соединений. [c.25]

    Ключевые слова остатки нефти, фракционирование, парафино-наф-тены.гвдь-хромагографня, распределение, идентификация. [c.168]

    Преимущество этого метода заключается в том, что все величины удерживания относятся к одному доступному веществу, и тем самым создаются возможности для сравнения, необходимого при качественном анализе. Кроме того, по мнению Эванса и Смита (19616), другие табулированные величины удерживания могут быть пересчитаны в единицы д, если известны значения объемов удерживания по меньшей мере для четырех нормальных парафинов. Эти авторы предложили также интересный метод идентификации неизвестных соединений с несимметричным строением (Эванс и Смпт, 1961а). Величины R g для соединений с несимметричными молекулами типа R — X — R могут быть вычислены из величин для соответствующих симметричных соединений по следующему соотношению  [c.233]

    Широкую область применения в газохроматографическом анализе нашла адсорбция определенных классов веш,еств на колонках с молекулярными ситами. Эти колонки помещают перед колонкой, служащей для соб-йтвенно газохроматографического разделения. Селективная адсорбция н-нарафннов была впервые применена для газохроматографического анализа высших углеводородов в работе Бреннера и Коутса (1958). Эти авторы установили, что и-парафины Сз — С при 60 — 180" количественно задерживаются на колонках длиной 30—100 см, заполненных молекулярными ситами 5А, а ароматические углеводороды, нафтены и разветвленные углеводороды выходят из этих колонок без изменения. Сравнение результатов анализа на обычной колонке и на предварительно включенных колонках с молекулярными ситами позволяет выполнить не только качественную идентификацию н-углеводородов, но и их количественное определение в смесях (например, в конечных продуктах реформинга). Общее содержанпе н-углеводородов и долю отдельных парафинов можно определить по разности величин площади пиков на обеих хроматограммах. [c.242]

    Сопоставление величины Z и количества ожидаемых в этой области компонентов показывает, что максимально возможная точность измерения и самая лучшая из достигнутых до сих пор разделительная способность недостаточны (даже если ограничиться исследованием одних углеводородов) для того, чтобы сделать заметными различия в индексах удерживания разделяемых компонентов. Для большей уверенности в правильности идентификации вещества по величинам удерживания необходимо сравнение индексов удерживания на двух или нескольких неподвижных фазах различной полярности. Благодаря высокой разделительной способности на капиллярных колонках даже малое различие в полярности проявляется довольно отчетливо. На рис. 38 сопоставлены хроматограмма разделения фракции 2-метилбутена-1 на сквалане и хроматограммы, полученные для одинаковых проб на слабополярном дидецилфталате и полиэфирной неподвижной фазе. Наблюдают отчетливый сдвиг ппков олефинов по отношению к заштрихованным на рисунке пикам парафинов (например, пент " [c.353]

    Из парафина, полученного карбамидной депарафинизацией, ароматические углеводороды и другие примеси выделяли двукратной обработкой карбамидом [3]. При этом неизбежны потери ароматических углеводородов, изо- и циклоалканов, вступающих в комплекс с карбамидом [8]. Выделенные примеси исследовали методом газожидкостной хроматографии, причем идентификация углеводородов была сделана лишь на основании относительных времен удерживания. Такие данные нельзя считать вполне надежными [9]. [c.157]

    В ВР 1993 приводится также методика идентификации нелетучих масел с помощью ТСХ (Ap.XN А 151) сорбент—кизельгур G, имп-регнированный в смеси петролейный спирт (Т.кип. 50-70 С) — жидкий парафин ПФ — ледяная уксусная кислота проявление—пары йода с последующим опрыскиватшем раствором крахмала. Таким образом идентифрщрфуются хлопковое, рапсовое, какао, оливковое, миндальное, кунжутное, арахисовое, кукурузное и льняное масла. Такие методики могут быть полезны при идентификации готовых суммарных ЛС. [c.461]

    Можно также отметить идентификацию препаратов аротгии черноплодной по образованию творожистого осадка парафинов при охлаждении этанольного или ацетонового растворов препарата. Сами парафины не являются действующими компонентами, но их присутствие характерно именно для препаратов аронии черноплодной. [c.462]

    Суть следующего способа идентификации продуктов хроматогряг-фярования заключается в существовании линейной завиоимости для парафинов нормального строения между и числам углеродных [c.64]

    Идентификация олефина и алкина основывалась на фактах, что оба они давали две молекулы СРдСООН при окислении и переводились в анализированный парафин присоединением одного и, соответственно, двух молей водорода. Это было установлено количественно в отдельных стандартных опытах, употребляя никель Ренея, и различие наблюдалось только в количестве израсходованного водорода. Проба Байера (перманганат калия) была поло ительна, в то время как бромная проба в четы-. реххлористом углероде оказалась отрицательной как для алкина, так и для алкена. [c.107]


Библиография для Парафины идентификация: [c.316]   
Смотреть страницы где упоминается термин Парафины идентификация: [c.123]    [c.90]    [c.110]    [c.242]    [c.107]    [c.111]    [c.247]    [c.262]    [c.267]    [c.168]   
Молекулярный масс спектральный анализ органических соединений (1983) -- [ c.48 ]




ПОИСК







© 2025 chem21.info Реклама на сайте