Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Распределение гетерогенное

    По степени дисперсности (т.-е. величине частиц распределенного в среде вещества) дисперсные системы делятся на грубодисперсные (взвеси и гетерогенные смеси) с размерами частиц более I мкм и на тонкодисперсные коллоидные) системы с размерами частиц 1—0,1 мкм. Если же вещество диспергировано до размеров молекул и ионов, то возникает гомогенная система — раствор. [c.125]


    Сложность и многообразие химических процессов обусловили создание весьма большого количества, различных типов химических реакторов. Это затрудняет разработку единой классификации. Обычно в качестве признаков классификации выбираются принцип действия (периодический, непрерывный, полунепрерывный), характер и свойства фаз реагирующих веществ (гетерогенные, гомогенные), характер теплового режима и распределение температур в реакционной зоне (изотермические, неизотермические, адиабатические), тип конструкции, схемы соединения реакторов и т. д. [c.14]

    Коэффициент самодиффузии. Для измерения самодиффузии воды в гетерогенных системах используется метод импульсного градиента (ИГ-ЯМР) [617—619]. При этом определяется макроскопический коэффициент диффузии D, так как минимальное время наблюдения за системой в данном методе (минимально возможное время между импульсами) превышает Ю с. Связь между D и микроскопическим коэффициентом самодиффузии Do определяется условиями диффузии в средах со стерическими препятствиями [620]. Для хаотически распределенных сферических препятствий [621]  [c.239]

Рис. 1-38. Распределение концентраций в случае диффузии н гетерогенной реакции на поверхности контакта на прямоугольной диаграмме Рис. 1-38. <a href="/info/30656">Распределение концентраций</a> в случае диффузии н <a href="/info/2685">гетерогенной реакции</a> на <a href="/info/30020">поверхности контакта</a> на прямоугольной диаграмме
    В наших обозначениях для наиболее вероятного распределения гетерогенностей по образцам (г=К) точное выражение функций распределения времени ожидания появления первого центра кристаллизации имеет вид [185] [c.72]

    I89, 156, 157, 184]. Пусть в образце имеется несколько типов (/) гетерогенностей с различной активностью (Тт))- Тогда распределение гетерогенностей по образцам описывается полиномиальным законом распределения, который при указанных далее условиях хорошо аппроксимируется многомерным распределением Пуассона. Вероятность, что число капель, содер- [c.74]

    В первую группу входят все неоднородные сополимеры, в первую очередь блок- и привитые, но также и статистические сополимеры со значительным отклонением от истинно статистического распределения. Гетерогенные нестатистические сополимеры обычно состоят из последовательных отрезков одной цепи, осажденных в виде капелек в матрице цепей второго компонента. Если блоки и привитые цепи очень коротки, фазового разделения может не быть. Размер осажденных капель обычно зависит от длины блоков и привитых цепей, а также от энергии взаимодействия химических составляющих. При длинных блоках и цепях может получиться двухфазная смесь, по свойствам аналогичная физической смеси двух различных полимеров. Каждая фаза обнаруживает свою обычную или близкую к обычной температуру стеклования. По этой причине нельзя говорить о температуре стеклования блок- или привитого сополимера они обычно обнаруживают две точки стеклования или широкую переходную область. [c.168]


    Далее исследуются задачи, связанные с тепловым взрывом в распределенных гетерогенных системах под действием инициирующих проходящих и отраженных УВ. В стационарном случае структура течения состоит из замороженной ударной волны с последующей зоной воспламенения. Вопрос о существования такой структуры сводится к определению корректности соответствующей краевой задачи. [c.14]

    Гетерогенно-каталитический процесс как причинно-следственная система. Объект нашего исследования формализуется как сложная физико-химическая система (ФХС), под которой понимается многофазная, многокомпонентная, в общем случае неоднородная сплошная среда, распределенная в пространстве (в пределах рабочего объема аппарата) и переменная во времени, в каждой точке гомогенности которой и на границе раздела фаз имеет место перенос массы, импульса, энергии, момента импульса, заряда при наличии источников (стоков) этих субстанций [10]. [c.31]

    При анализе низкомолекулярной полимеризации ниже используется классический подход, поскольку определение термодинамических функций сырья и продуктов не вызывает затруднений. Процессы получения высокомолекулярных соединений имеют ряд особенностей и рассмотрены отдельно. Для них, как правило, не удается определить термодинамические функции конечных продуктов, поэтому изучают вероятность представительных реакций зарождения и роста полимерной цепи. В связи с этим сочетают термодинамический и кинетический анализы. При получении высокомолекулярных соединений нужно учитывать гетерогенность реакций, причем получаемый продукт может быть частично кристаллическим и охарактеризован лишь средней степенью полимеризации (иногда законом распределения полимера по молекулярной массе). [c.245]

Рис. 1-37. Схема распределения концентраций при диффузии и медленной гетерогенной реакции на поверхности контакта фаз Рис. 1-37. <a href="/info/1442396">Схема распределения концентраций</a> при диффузии и медленной <a href="/info/2685">гетерогенной реакции</a> на поверхности контакта фаз
    Скорость реакции, происходящей на поверхности контакта фаз в направлении прямом и обратном, зависит от температуры. В связи с этим в случае гетерогенной реакции коэффициент распределения сильно изменяется вместе с температурой, и такой факт обычно является указанием на то, что на поверхности контакта идет реакция. [c.72]

    В гетерогенной системе может происходить перенос вещества диффузией между разными фазами кроме того, между молекулами в данной фазе может проходить химическая реакция. Если химический процесс является равновесным, то между веществами (концентрациями веществ) в равновесной смеси устанавливается строго определенное распределение. В гомогенной или гетерогенной системах связь между равновесными концентрациями веществ устанавливается с помощью закона действующих масс. [c.156]

    Результаты, полученные для простых гомогенных реакций, нетрудно распространить на гетерогенные реакции, а также процессы, включающие произвольное число реакций первого порядка. В случае гетерогенной реакции эффективной константой скорости к будет произведение константы скорости гетерогенной реакции, отнесенной к единице активной поверхности, на площадь активной поверхности в единице объема ячейки. Для этой величины останутся справедливыми все выделенные выше соотношения. Реакция на пористой частице катализатора может рассматриваться как гомогенная реакция, протекающая только в застойных зонах, но не в проточной части ячейки. Степень превращения, достигаемая в результате такой реакции, по-прежнему определяется формулой (VI.58), но функция А к) в этом случае должна быть связана с функцией распределения времени пребывания только в застойных зонах, а не во всем объеме ячейки. Эта видоизмененная функция А (к), в отличие от (VI.59), будет иметь вид  [c.233]

    В зависимости от того, находится ли катализатор в той же фазе, что и реагирующие вещества, т. е. равномерно ли он распределен в реакционном объеме, или образует самостоятельную фазу, говорят о гомогенном или гетерогенном катализе. При гетерогенном катализе ускорение процесса обычно связано с каталитическим действием поверхности твердого тела (катализатора). В качестве [c.222]

    Конкретная причина возникновения электрохимической гетерогенности и наиболее обычное распределение полюсов коррозионного элемента [c.21]

    В книге собраны и подробно изложены основные сведения, необходимые для оптимального проектирования химических реакторов и управления ими. В ней приведены основы расчетов и оптимизации химических реакторов рассмотрен вопрос о распределении времени контактирования и перемешивании в непрерывных проточных реакторах, описаны химические реакции в гетерогенных системах. [c.4]


    Они перечислены в табл. 4, где приведена классификация по условию протекания реакции (гомогенная или гетерогенная) и по распределению реагентов в фазах. [c.153]

Рис. У-7. Гетерогенная равновесная реакция в сферической пористой частице схема распределения концентрации, рассчитанная по уравнению (У,30) при К = 5- ф = 2 = 0,1 Рис. У-7. <a href="/info/939492">Гетерогенная равновесная реакция</a> в сферической <a href="/info/785680">пористой частице</a> <a href="/info/1442396">схема распределения концентрации</a>, рассчитанная по уравнению (У,30) при К = 5- ф = 2 = 0,1
    Анализ экспериментальных результатов, полученных методом капель , требует учета неравномерности распределения гетерогенных включений по образцам [8, 9, 185]. В пре-дыдуш,их работах этот вопрос рассматривался для случая конкуренции гетерогенного и гомогенного стационарного зародышеобразования [4, 8]. Однако даже для этого частного случая проблема проанализирована далеко не полностью, а иногда и не точно 162], не указаны аппроксимации функции распределения моментов кристаллизации образцов и пределы выведенных соотношений, не даны оценки дисперсии измеренных параметров процесса нуклеации. Поэтому целесообразно более полно проанализировать метод многих проб при следующих предположениях [162]  [c.72]

    Рассмотрены математические методы определепия функции распределения гетерогенной поверхности по энергиям адсорбции на основе ампиричссноИ изотермы адсорбции газа. С этой точки зрения рассмотрены изотермы Фрейндлиха, БЭТ, Дубинина—Радушкевича. Предложено обобщение этого метода, применимое для адсорбции из растворов. Лит. — 17 назв. [c.231]

    Следует учесть также функциональную и структурную неоднородность тилакоида, связанную с латеральной гетерогенностью мембран. Комплексы ФС II локализованы в местах контакта тилакоидов гран, ФС I и АТФ-синтетазный комплексы — в зонах свободного контакта со стромой в ламелярных тилакоидах и маргинальных торцовых участках тилакоидов гран. Цитохромный комплекс и пластохинон равномерно распределены в латеральном плане мембраны. Диффундирующий внутри тилакоида пластоцианин имеет разную долю восстановленных молекул в центре тилакоида и на краях. Скорость транспорта электронов по ЭТЦ зависит от pH внутри тилакоида и pH стромы. Для тилакоидов, собранных в граны, может иметь значение нехватка протонов в тонком водном слое между дисками для образования PQH2 из-за медленной диффузии ионов из стромы через узкую межгранную щель. Реалистичное описание зависимости внутритилакоидного pH и числа поглощенных на свету протонов от pH стромы дает математическая модель, описывающая диффузный перенос протонов через мембрану тилакоида путем обмена Н+ с внутримембранными кислотными группами (Тихонов). Таким образом, все процессы электронного и протонного транспорта и их сопряжения необходимо рассматривать в распределенной гетерогенной системе. [c.216]

    В гетерогенном катализе на твердом катализаторе промежуточное химическое взаимодействие реактантов с катализатором осуществляется лишь на его доступной для молекул реагирующих веществ так называемой реакционной поверхности посредством адсорбции. Удельная реакционная поверхность гетерогенного катализатора определяется его пористой структурой, то есть количес — твом, размером и характером распределения пор. [c.85]

    Важным показателем в данной модели является распределение частиц микрогетерофазы по каплям факела распыла во-пер-вых, он указывает на собственно механизм гетерогенного надрыва шейки и, во-вторых, имеет существенное технологическое значение. К примеру, если ГА-техника, работающая в режиме распыления, используется в химическом синтезе, где один из реагентов — газ, то, очевидно, что площадь контакта реагентов [c.142]

    Можно выделить два основных фактора неоднородного ущи-рения линий ЯМР воды в гетерогенных системах— пространственный и ориентационный [610]. Пространственный фактор ущирения обусловлен пространственным распределением неоднородных магнитных полей в области гетерогенной системы, заполненных водой. Этот фактор для неоднородностей сферической формы и системы параллельных цилиндрических волокон детально проанализирован [611]. Для внешней жидкости в дисперсии сферических частиц линия ЯМР имеет гауссову форму, а ее полуширина равна [c.238]

    Большое внимание в последнее десятилетие уделялось взаимосвязи между скоростями химической реакции и диффузии. Дамкел-лер и особенно Франк-Каменецкий широко развили эту область. Последний различает микрокинетику (т. е. химическую кинетику) и макрокинетику (т. е. физический транспорт — перенос реаги-руюш их веществ). Следуя ван Кревелену мы должны учитывать при макрокинетическом анализе величины среднего моле1 улярного пробега, распределения вещества в гетерогенных системах (диффузия) и в реакторе в целом (перенос конвекцией). Укажем, что для получения сведений о химической кинетике мы все еще должны полностью полагаться на экспериментальные данные по каждой отдельной исследуемой реакции. [c.20]

    Подавляющее большинство процессов химической, нефтехимической и микробиологической промышленности осуществляется в присутствии катализаторов, причем многие из них основаны на принципах гетерогенного катализа. Отличительной особенностью гетерогенно-каталитических процессов является их исключительная сложность, обусловленная многомерностью и нелинейностью рассматриваемых объектов, распределенностью параметров в пространстве и неременностью во времени, наличием случайных некотролируемых возмущений, нарушениями структуры и характера протекания процесса, осложнениями, связанными с отравлением катализатора, множественностью стационарных состояний, температурной и концентрационной неустойчивостью и т. и. [c.3]

    Описание физико-химических явлений, составляющих гетерогенно-каталитический процесс в порах катализатора, опирается на рассмотренную классификацию геометрических моделей пористых сред, в частности на иерархичность их строения, в которой выделяются несколько уровней организации пористой структуры 1) молекулярная и субмолекулярная структура катализатора — плотность и характер расположения активных центров, дефектов кристаллической решетки, кристаллическое строение, состояние поверхности 2) поровая структура — форма нор, связность порового пространства, суммарная внутренняя поверхность, распределение пор по размерам 3) зерновой (гранулометрический) состав катализатора — текстура катализатора, форма частиц катализатора, распределение зерен по размерам и по объемам  [c.139]

    Эти задачи хорошо изучены применительно к неизотермическим гетерогенно-каталнтическим реакторам. Впервые задача об оптимальном распределении температуры реакции была сформулирована Билоузом и Амундсоном [2] и для случая реакции первого порядка решена Хорном [3]. Выражение для расчета оптимального распределения температур в случае процесса, включающего одну обратимую реакцию, было получено Боресковым [4]. Дальнейшему развитию этой проблемы посвящено большое число исследований [5— 10]. [c.171]

    Неоднородность металлической фазы, жидкой коррозионной средй и физических условий (см. с. 188), а также конструкционные особенности металлических сооружений (их полиметаллич-ность, наличие узких зазоров и др.) делают поверхность металл-электролит электрохимически гетерогенной, что часто оказывает влияние на скорость электрохимической коррЬзии металлов и ее распределение, изменяя характер коррозионного разрушения. Даже сплошная коррозия металлов бывает по этим причинам неравномерной или избирательной. Кроме того, встречается местная коррозия различных видов, опасность которой обычно тем больше, чем больше локализовано коррозионное разрушение. Местная коррозия не определяется общей скоростью коррозионного процесса. [c.414]

    Существенный вклад в теорию применения ЛССЭ к гетерогенному катализу вносит учет функции распределения каталитических центров по коррелирующему параметру, например по функции кислотности Гаммета. В этом случае, в соответствии о основным уравнением Рогинского для неоднородных поверхностей, скорость реакции для кислых катализаторов, если предположить, что активность катализатора зависит только от силы кислоты и вид кинетической зависимости одинаков для всех центров, выразится уравнением [c.161]

    В механических и гидромеханических процессах целенаправленно проводят разделение твердых тел и неоднородных систем, измельчение и диспергирование, смешение и образование неоднородных систем и т.п. Для интенсификации подобных процессов требуется активное вмешательство в движение отдельных элементов жидкостей и твердых тел. Для этого необ содимо управление полями скоростей и напряжений в заданных пространственно-временных масштабах как в элементах объема, так и на ограничивающих поверхностях. Таким образом, в общем случае интенсификация механических и гидромеханических процессов связана с задачей создания управляемых течений в многофазных гетерогенных системах и динамических полей напряжения в твердых телах. В частности, такие задачи могут решаться специальными приемами генерации вихрей, колебательных потоков, дислокаций и тому подобных структур с необходимой интенсивностью и распределением в пространстве и времени. [c.18]

    Гетерогенные реакции сопровождаются транспортными явлениями внутри фаз и между ними. Это реакции в системах газ— жидкость, жидкость—жидкость, газ—твердое тело, жидкость— твердое тело, газ—жидкость—твердое тело (катализатор), причем они могут протекать в сплошной, дисперсной фазе или одновременно в обеих фазах. Совокупность факторов, которые необходимо учитывать при проектировании гетерогенных реакторов, весьма обширна и разнообразна в зависимости от фазового состояния реагентов и продуктов реакции, их аппаратурного оформления. Поскольку химическому превращению предшествует стадия транспортирования вещества из фазы в зону реакции и отвод продуктов реакции, скорость протекания собственно химического взаимодействия будет определяться соотношением скоростей химического превращения и массоиереноса, и в зависимости от превалирования одной из составляющих она будет протекать или в диффузионной, или в кинетической области. Отсюда следует важность обеспечения необходимых условий массоиереноса за счет гидродинамических факторов, т. е. состояния фаз, а также за счет аг-J)eгaтнoгo состояния реагентов (например, распределения частиц -ПО размерам в случае реакций с твердой фазой). [c.82]

    Книга состоит из четырех глав. В первой главе, посвященной качественному анализу структуры процесса массовой кристаллизации как сложной ФХС, вскрываются особенности данной ФХС как на языке смысловых, лингвистических построений, так и на языке точных математических формулировок, причем в последнем случае обсуждаются два подхода — феноменологический (детерминированный) и стохастический. На уровне детерминированного подхода формулируется обобщенная система уравнений термогидромеханики полидисперсной смеси с произвольной функцией распределения кристаллов по размерам с учетом роста, растворения, зародышеобразования, агрегации и дробления кристаллов. Особое внимание уделено описанию процесса вторичного зародышеобразования. На основе термодинамического подхода получены теоретические зависимости для структуры движущих сил вторичного зародышеобразования при бесконтактном и контактном зародышеобразовании. Стохастический подход представлен методом пространственного осреднения, развитого в последние годы в механике гетерогенных сред, а также методами фазового пространства и стохастических ансамблей для описания стохастических свойств процессов массовой кристаллизации. На основе метода пространственного осреднения получено уравнение типа Колмогорова— Фоккера — Планка с коэффициентом диффузии, учитываю- [c.5]

    Здесь Дс —пересыщение сплошной фазы переменные /г, g, и, ш, I— гомогенные кинетические параметры М.,— масса твердой фазы в объеме кристаллизатора (третий момент плотности функции распределения) —поверхность твердой фазы (второй момент) — линейный размер твердой фазы (первый момент) —число кристаллов в аппарате (нулевой момент) /, к, I, р — параметры, характеризующие порядки соответственно третьего, второго, первого, нулевого моментов плотности функции распределения кристаллов по размерам км, к а, кг, —константы скорости вторичного зародышеобразования ки—константа скорости зародышеобразовання, происхоля1цс о гомогенным или гетерогенным путем буквы М, 5, [c.336]

    Здесь мы очень коротко рассмотрим основные проблемы, связан-ш.те с распределением времепп пребыванпя, подводом или отводом тепла, с массопередачей и величиной поверхности раздела в гетерогенных системах. [c.236]

    Трубчатый реактор обычно используют для изучения кинетики быстрых реакций, особенно гомогенных и гетерогенных газовых реакций. Его основной недостаток — невозможность непосредственного измерения скорости превращенпя, так как в результате экспе-риме1иа получают среднюю по всей длине реактора величину ( интегральный реактор). Для устранения указанного недостатка часто применяют трубы небольшой длины или повышают нагрузку реактора, чтобы получить низкие степени превращения и почти постоянные условия по всей длине трубы ( дифференциальный реактор). При этом требуется высокая точность измерений состава (см., нанример, Риетема Кроме того, при использовании короткой трубы результат может зависеть от значительной растянутости распределения времени пребывания. [c.236]

    Другой способ уменьшения перепада температур — снижение скорости нревращения. Для гетерогенных реакций в реакторе с неподвижным слоем этого можно достигнуть, например, разбавлением каталитической фазы инертным материалом, имеющим хорошую термическую проводимость. В этом случае радиальные температурные перепады могут быть более или менее сглажены. Математические поправки для радиального температурного распределения, если оно все же существует, были рассмотрены в работе Изотермические условия также можно создать снижением концентрации реагента, либо путем разбавления инертным веществом, либо, в случае газов, уменьшением давления (ле Гофф, Боннетен и Леторт [c.237]

    Распределение времени пребывания газа в псевдоожиженном слое. В случае каталитических процессов, протекающих в системе газ — твердое тело, данные о распределении времени пребывания газа в слое играют главную роль для нахождения характеристик реакторов. На ранних этапах исследования этой проблемы процессы изучали при помощи модели диффузионного типа. Однако, как оказалось, результаты,-полученные на такой модели, только в относительно узкой области коррелировались с опытными данньийи, особенно для каталитических гетерогенных процессов. Это привело к выводу о том, что диффузионную однопараметрическую модель можно использовать только для весьма приближенного объяснения характеристик псевдоожиженного слоя. [c.292]


Смотреть страницы где упоминается термин Распределение гетерогенное: [c.231]    [c.39]    [c.233]    [c.234]    [c.97]    [c.330]    [c.358]    [c.256]    [c.18]    [c.236]    [c.659]   
Радиохимия и химия ядерных процессов (1960) -- [ c.58 , c.62 ]




ПОИСК







© 2025 chem21.info Реклама на сайте