Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Парафиновые углеводороды критические температуры

    Пропан применяется как в качестве самостоятельного растворителя, так и в комбинации с другими жидкостями [52—56]. При температуре окружающей среды пропан растворяет исходное масло, а при повышении температуры до 40—60 °С из раствора выделяются смолистые и асфальтовые соединения. При критической температуре пропана 96,8 °С его растворяющая способность падает до минимума и выделяются последующие масляные фракции. Разделение масла происходит по плотности фракций и имеет сходство с эффектом дистилляции, но из-за относительно низких температур проходит в более постоянных условиях. Пропан не отделяет ароматических и нафтеновых углеводородов от парафиновых, и экстракция с его участием нисколько не улучшает свойств масел. Ранее же описанные растворители повышают качество масел. В связи с этим обработка масел пропаном служит только для удаления асфальтовых соединений. [c.394]


    Уотсон и Нельсон предложили в качестве фокальной принимать точку, температура которой на 83,3 К превышает критическую температуру некоторого нормального парафинового углеводорода, характеризуемого температурой кипения, равной температуре 40%-ного отгона по атмосферной линии ОИ. [c.219]

    При обычных температурах крезолы хорошо растворяют ароматические углеводороды, хуже — смолистые соединения и асфальтены и мало растворяют парафиновые и нафтеновые углеводороды. Критические температуры растворения нефтяных фракций в крезо-лах сравнительно низки, о чем свидетельствуют следующие данные  [c.126]

    Определение ароматических и нафтеновых углеводородов в топливах анилиновым методом. Метод основан на различной растворимости углеводородов узких групп в полярных растворителях, в частности, в анилине. Количественной мерой этой растворимости служит критическая температура растворения углеводородов (топлива) в анилине — температура полного смешения их с растворителем ( анилиновая точка ). Углеводороды той или иной группы заметно различаются по критическим температурам растворения в анилине чем лучше растворяется углеводород, тем ниже его анилиновая точка. Так, ароматические углеводороды характеризуются очень низкой анилиновой точкой (ниже —30° С), затем в порядке возрастания следуют непредельные, нафтеновые и парафиновые углеводороды [1, [c.206]

    Анилиновая точка. Высокие анилиновые точки (критические температуры растворения в анилине) показывают, что в топливе высокое содержание парафинов, так как анилин смешивается с парафиновыми углеводородами только при нагревании. Этот показатель носит относительный характер, так как анилиновая точка будет различной для топлив с одинаковым цетановым числом но полученных из различных нефтей — например, калифорнийской и пенсильванской. Анилиновая точка, например, не имеет никакого физического смысла, когда определяются цетановые числа различных алкилбензолов [345]. [c.441]

    Соответствующая данному явлению температура носит название критической, температуры растворимости. Последняя зависит как от растворителя, так и от природы и удельного веса нефти или нефтепродукта. Индексом растворимости считают то число смеси равных объемов хлороформа и 93% этилового спирта, которое необходимо для того, чтобы растворить 100 см нефтепродукта. Наибольшей растворимостью обладают нефти с большим содержанием ароматических углеводородов (галицийские и румынские), наименьшей — нефти с большим содержанием углеводородов парафинового ряда (пенсильванские), и, наконец, среднее место между ними занимают нефти нафтеновые типа бакинских, что видно из табл. 21. [c.73]


    Для деасфальтизации могут быть использованы и более высокомолекулярные парафиновые углеводороды, например бутаны, нентаны, что возможно в условиях, когда температуры растворов масла в этих углеводородах, как и растворов в пропане, будут близки к критической температуре растворителя. Однако вследствие увеличения углеводородной цепи растворителя значительно повышается роль дисперсионных сил, и, несмотря на почти одинаковую критическую плотность н-парафинов (от Сд до С ) [26], четкость отделения асфальто-смолистых веществ от углеводородов снижается и деасфальтизат обогащается нежелательными соединениями, повышающими его коксовое число, плотность и т. д. При использовании в качестве растворителя этана роль дисперсионных сил по сравнению с пропаном резко снижается, значительно увеличивается эффект взаимного притяжения молекул смол и углеводородов, и поэтому асфальтовый слой очень обогащается углеводородами. [c.179]

    Тр — критическая температура растворения парафиновых углеводородов Тп —критическая температура растворения нафтеновых углеводородов  [c.482]

    В качестве двух жидкостей для определения критических температур растворения указанные авторы предложили применять анилин и бензиловый спирт. Преимущество указанного способа заключается в том, что отпадает необходимость обработки бензина серной кислотой или каким-либо другим реагентом для удаления ароматических углеводородов и продолжительность операции значительно сокращается. Однако точность способа ограничивается колебанием критических температур растворения самих нафтеновых и парафиновых углеводородов, находящихся в бензинах, ввиду различия строения указанных углеводородов (пяти- и шестичленные нафтеновые углеводороды, нормальные и разветвленные парафиновые углеводороды). [c.482]

    Фракция 110—135° С 1-часового крекинга октена с удельным весом (при 15° С) 0,741 была подвергнута обработке 37а объемами 98%-ной серной кислоты и вторичной перегонке в прежних температурных пределах. Полученная фракция имела удельный вес (15° С) 0,732 и критическую температуру растворения в анилине 63°,2 С. На основании анилиновой точки находим (163), что насыщенная часть фракции 110— 135° С состояла из 64% парафиновых и 36% нафтеновых углеводородов. [c.123]

    Для синтезированных нитроспиртов определяли критические температуры растворения с ароматическими и неароматическими углеводородами с тем, чтобы оценить их избирательность. Упомянутые температуры, полученные по кривым при изучении фазовых равновесий в двойных смесях, приводятся в табл. 2. Из данных табл. 2 видно, что критические температуры растворения парафиновых углеводородов в низкомолекулярных нитроспиртах (нитро-пропанолы, нитробутанол) оказались выше температур кипения первых. [c.52]

    Ароматические углеводороды являются наиболее устойчивыми соединениями при высоких температурах. Критической температурой для нафтеновых углеводородов является 250°, выше этой температуры реакции дегидрогенизации нафтеновых, а также циклизации парафиновых и олефиновых углеводородов термодинамически возможны. Выше 400° равновесие настолько сдвинуто в сторону образования ароматических углеводородов, что значительное давление водорода (порядка 15—45 атп) не может подавить реакции дегидрогенизации. [c.96]

    Критическая температура нормальных парафиновых углеводородов [35, с. 1] определяется по уравнению [c.132]

    Эффективная температура кипения смесей парафиновых и олефиновых углеводородов характеризует нормальную температуру кипения эффективная температура кипения ароматических, нафтеновых и ацетиленовых смесей углеводородов — температуру кипения парафинового углеводорода, имеющего аналогичную критическую температуру. [c.183]

    Анилиновая точка или критическая температура растворения крекинг-бензина в анилине до известной степени характеризует химический состав бензинов. Высокая анилиновая точка характерна для бензинов с высоким содержанием парафиновых углеводородов. Нормальные парафины и изопарафины с одинаковым молекулярным весом имеют приблизительно одинаковые анилиновые точки, около [c.309]

    Различные органические растворители, применяемые или пригодные для очистки смазочных масел, разделяют на экстрагирующие и осадительные в зависимости от того, растворяют они или, наоборот, не растворяют нежелательные соединения. Например, такие растворители, как анилин и фурфурол, селективно экстрагируют ароматические и нафтеновые углеводороды. Селективность этих экстрагентов, рассчитанная на основе критических температур растворения, для ароматических углеводородов в шесть раз выше, чем для нафтенов (по отношению к предельным соединениям). Экстракция этими растворителями приводит к накоплению нафтеновых и парафиновых углеводородов в рафинате, а ароматических — в экстракте. [c.634]

    Существует понятие критической температуры начала коксования труб (/кр), которая связана с характеризующим фактором К, определяющим степень парафинисто-сти сырья. Чем выше К и, следовательно, чем больше в сырье парафиновых углеводородов, тем ниже область критических температур начала закоксовывания труб. Так, для парафинистого сырья с К—11,8 область критических температур, в которой начинается закоксовывание труб, равна 426—454 °С. Для менее парафинистого сырья с =11,3 область критических температур 454— 478 °С. Значение /кр для крекинг-остатка примерно на 10 °С ниже, чем для гудрона той же нефти. [c.165]


    Шаванн и Симон заметили, что присутствии ароматичеилтх углеводородов критическая температура растворимости смеси углеводородов понижается и что это понижение пропорционально количеству присутствующих ароматических углеводородов. Из четырех классов углеводородов наиболее высокой критической температурой растворимости обладают парафиновые углеводородгл, наиболее низкой— ароматические, нафтены же и олефины занимают промежуточное положение. [c.108]

    Метод Ли—Эрбара—Эдмистера рекомендуется для области температур от —158 до 262 °С и давлений, не превышающих 0,8 критического давления смесей. Метод применим для смесей углеводородов (парафиновых, ароматических, нафтеновых) с примесью азота, диоксида углерода и сероводорода [16]. Этот метод не рекомендуется для систем, содержащих 50% или более неуглеводородных газов в жидкой фазе и компоненты, критическая температура которых значительно ниже температуры системы. Среднее отклонение расчетных значений констант фазового равновесия от экспериментальных составляет 6%. [c.53]

    Весьма вероятно, что удастся обобщить и систематизировать из-м ерения абсорбции инфракрасной части спектра и получить быстрый метод качественного анализа углеводородных смесей. След я числу классов углеводородов, представленных в смеси, числу, которое ниже Ш1И равно пяти (парафиновые, олефиновые, циклические насыщенные, гидроароматические и ароматические), можно установить равное число уравнений, связывающих концентрации различных, представленных в смеси классов углеводородов, зная уравнение, выведенное из измерений 1) дисперсии рефракции, 2) магнитного вращения плоскости поляризации, 3) критической температурьг растворимости в анилине, 4) критической температуры растворимости в беязило-Бом спирте, а также имея в виду равенство — [c.110]

    Растворимость индивидуальных углеводородов в различных растворителях швисит от их природы, молекулярного веса и температуры. Та , растворимость их в воде крайне низка. С повышением температуры она возрастает, а в области критических температур снижается. Наибольшей растворимостью в воде обладают диеновые углеводороды, за ними следуют ароматические и олефины. Наимень-В1ую растворимость проявляют парафиновые углеводороды. В одном и том же гомологическом ряду растворимость в воде углеводородов возрастает с увеличением их молекулярного веса. Углеводородные газы растворяются в воде в незначительных количествах. С повышением давления (рис. 39) и понижением температуры (табл. 9) растворимость углеводородных газов в воде повышается, а в присутствии растворенных в воде минеральных солей — понижается. [c.87]

    При недостаточно четкой вакуумной перегонке мазута получающийся гудрон содержит большое количество фракций, выкипающих до 500°С. Низкомолекулярные углеводороды, содержащиеся в остаточном сырье, более растворимы в пропане в области предкритичес-ких температур, чем высокомолекулярные фракции. Растворяясь в пропане, они действуют как промежуточный растворитель, повышая благодаря наличию в их молекулах длинных парафиновых цепей дисперсионную составляющую Ван-дер-Ваальсовых сил и тем самым растворяющую способность растворителя по отношению к высокомолекулярным и полициклическим углеводородам и смолам. Кроме того, при деасфальтизации облегченного масловязкого остатка возрастает температура образования двухфазной системы, приближаясь к критической температуре пропана. В результате ухудшаются показатели деасфальтизата по коксуемости и вязкости (табл. 6.5). При деасфальтизации более концентрированных остатков получающийся деасфальтизат характеризуется более низкой коксуемостью, лучшим цветом, меньшим содержанием металлов (ванадия и никеля), серы и т.д. При этом в силу низкого потенциального содержания ценных масляных фракций выход деасфальтизата, естественно, ниже, чем при переработке облегченных остатков. Однако чрезмерная концентрация остатка вакуумной перегонки также нецелесообразна, поскольку при этом помимо снижения отбора целевого продукта значительно повышается вязкость деасфальтизата, что не всегда допустимо. [c.276]

    Способ Обера и Обре [225] служит для одновременного определения ароматических, нафтеновых и парафиновых углеводородов на основании критических температур растворения бензина в двух различных жидкостях. Для объяснения теоретических основ данного способа введем следующие обозначения  [c.481]

    Критические температуры растворения низкокипящих углеводородов парафинового, нафтенового и ароматического рядов в анилине характеризуются следующими данными (по Шаванну)  [c.72]

    Можно отметить, что для нормальных парафиновых углеводородов минимальная критическай температура их смесей с водой на 10-30 °С ниже критической температуры воды. Это означает, что критические явления жидкость-газ в смесях упомянутых углеводородов с водой наблюдаются в сравнительно узкой области температур ниже критической температуры воды. Критическая кривая газ-газ начинается в точке минимума критической температуры и направляется в сторону высоких температур и давлений. Давления точек минимумов критической температуры резко уменьшаются с ростом молекулярной массы нор- [c.67]

    Ньюман [515] осуществил проверку справедливости ряда широко применяемых корреляций для определения молекулярной массы, критических температуры и давления, и также давления пара некоторых циклических соединений, содержащихся в каменноугольных смолах. Полученные результаты говорят о том, что для каждой фракции необходимо измерять или оценивать соотношение ароматических, нафтеновых и парафиновых углеводородов, в противном случае при прогнозировании давления паров жидкостей по методу Соава, Ли — Кеслера или Питцера — Керля можно ожидать погрешностей в размере 10—15%. Результаты прогнозирования, касающиеся твердых веществ, гораздо менее точны. [c.454]

    Lewis показал, что для смесей парафиновых углеводородов с воздухом имеется критическая температура, при которой химическая реакция энергич1 о протекает с увеличением числа молекул. Это было продемонстрировано медленным нагреванием определенного количества жидкого углеводорода в большой цилиндрической колбе, причем давление медленно повышалось, чтобы поддерживать постоянным объем газа. Если химическая реакция не происходит, то кривые температуры и давления должны приблизительно следовать газовым законам. В случае смесей углеводородов с воздухом всегда наблюдалось резкое пО Вышение давления или изгиб кривой, что указывает на химическую реакцию. Температура, при которой происходит это повышение, была названа критической температурой изгиба (С. I. Т.) она зависит от молекулярного веса углеводорода. Например для следующих углеводородов она имеет такие значения пентан 253°, гексан 232°, гептан 212°, октан 198°. Эти величины несколько ниже для нормальных углеводородов, чем для углеводородов с разветвленной цепью. Так, критическая температура изгиба нО рм. пентана равна 253°, а для изопентана она равна 259—260°. Эти величины очень мало зависят от концентрации паров углево до рода в аппарате. Как только достигнута температура выше тем пературы 1згиба, газовая смесь остается устойчивой приблизительно до 450°. [c.1039]

    При одинаковых температурах кипения критические температуры афтеновых углеводородов приблизительно на 25° С и углеводородов группы бензола приблизительно на 40° С выше критической температуры группы парафиновых углеводородов. [c.30]

    Для расчета констант фазового равновесия по уравнениям (I) требуются данные критических температур, критических факторов сжимаемости и давления сходимости. Для индивидуальных углеводородов значения критических параметров были приняты из приложения [2], а для узких нефтяных фракций определены по номограммам, в которых представлена зависимость критических параметров узких нефтяных фракций от средней температуры кипения и относительной плотности в [2j, или по аппроксимациям, приведенным в литературе [4]. Для расчета критических параметров использовались зависимости, полученные Ли и Кестлером, в которых они определяются как средневзвешенные параметры фракций, содержащих парафиновые, ароматические и циклические углеводороды [s]  [c.36]

    При температурах вьипе 200°С по коэффициенту теплопроводности высших нормальных парафиновых углеводородов в литературе никаких данных нет. Это связано в основном с трудностью использования существующих методов для измерения при высоких температурах. Между тем большой научный и практический интерес представляет именно исследование теплопроводности при высоких температурах с охватом критической температуры. [c.136]

    Некоторые исследователи в указанном выше ряду меняют местами пара-фи> ы и моноолефины. Так например Тиличеев и Фейгин , на основании результатов, полученных ими при крекинге различных синтетических или выделенных из нефтяных фракций углеводородов при 425°, заключили, что этиленовые углеводороды разлагаются быстрее парафиновых. Это различие уменьшается при увеличении молекулярного веса. Thompson указывает на то, что предельные углеводороды с разветвленной цепью менее стойки, чем углеводороды с прямой цепью, и что олефиновые углеводороды разлагаются легче, чем предельные. Стойкость олефиновых углеводородов тем больше, чем ближе двойная связь к середине цепи. МсКее и Szayna исследовали крекинг различных бензиновых фракций (тем. кип. 120—126°), а также целого ряда углеводородов (ароматических, олефиновых и парафиновых) при температурах 405—420°, причем они определяли критические температуры разложения исследуемых веществ через определенные промежутки времени. Оказалось, что быстрее всего разлагаются олефиновые углеводороды, менее бы-стро предельные и медленнее всего бензиновые фракции. Ароматические углеводороды (смесь толуола и бензола) совершенно не изменились, даже после нагревания в течение нескольких часов. [c.111]

    Оловянной точкой называется максимальная критическая температура растворения йодного олова (81114) в углеводородах. Как показали авторы этого метода Р. Д. Оболенцев и А. А. Бочаров, а в дальнейшем М. М. Кецлах, 1 оловянные точки близких по температурам кипения, парафиновых углеводородов значительно разнятся друг от друга, а в бинарных смесях они подчиняются правилу аддитивности. Это и дает возможность применения оловянных точек для количественного анализа бинарных смесей. В табл. 23 приводятся оловянные точки некоторых индивидуальных углеводородов, а на фиг. 13 — график, иллюстрирующий изменение оловянной точки в зависимости от содержания и-гентана в смеси с 2,2,4-триметилиентаном. Разница в температурах кипения этих углеводородов составляет только 0,8°, а в оловянных точках — около 60°. Смесь указанных углеводородов может применяться при установлении эффективности. лабораторных ректификационных колонок, причем в этом случае метод оловянных точек являfeт я единственно приемлемым для установления ее состава. [c.150]


Смотреть страницы где упоминается термин Парафиновые углеводороды критические температуры: [c.100]    [c.229]    [c.51]    [c.381]    [c.171]    [c.65]    [c.30]    [c.74]    [c.62]    [c.68]    [c.192]    [c.37]    [c.8]    [c.27]    [c.179]    [c.182]    [c.30]    [c.643]   
Общая химическая технология топлива (1941) -- [ c.696 ]




ПОИСК





Смотрите так же термины и статьи:

Парафиновые углеводороды

Температура критическая

Температура парафинов



© 2025 chem21.info Реклама на сайте