Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиэтилен низкого давления получение

    Полиэтилен низкого давления, полученный с катализатором Циглера — Натта, имеет строго линейное строение, соответствующее приведенной выше формуле. При высоком давлении получается полимер, имеющий боковые ответвления — обычно метильные группы (одна на цепочку из 8, 16, 40 и более углеродных атомов). Следовательно, полимеризация протекает по схеме [c.72]


    Полиэтилен, полученный последними двумя способами (полиэтилен низкого давления), имеет строго линейное строение, более высокую молекулярную массу до 70 000 и температуру плавления на 20° выше, чем полиэтилен высокого давления с разветвленной структурой. Зависимость основных механических свойств полиэтилена от молекулярной массы представлена на рис. 94. Полимеризация этилена при высоком давлении представляет собой цепную реакцию, протекающую по свободно-радикальному механизму с выделением большого количества теплоты  [c.216]

    Чем различаются полиэтилен низкого давления и полиэтилен высокого давления по свойствам и методу получения  [c.405]

    А для того чтобы получить полиэтилен по рецепту Циглера, сырье приходится сначала растворить в бензине—иначе реакция попросту не пойдет. Затем полученный полиэтилен нужно отделить от растворителя и катализатора, многократно промыть (сначала водой, а потом спиртом) и высушить. В итоге полиэтилен низкого давления несколько дороже. [c.127]

    П о к р ыт ИЯ на основе полиэтилена среднего давления и сополимера этилена с пропиленом. Опытные партии СЭП и ПЭ среднего давления имели больший процент крупных частиц, чем промышленный полиэтилен низкого давления. В качестве стабилизаторов были применены неозон А + Д. Ф. Ф. Д. (по 0,2%) и сажа газовая, канальная 0,5% (табл. 5.13). Процесс напыления этих композиций как по характеру, так и по скорости протекал аналогично процессу нанесения порошковой системы из полиэтилена низкого давления. Физико-механические свойства полученных пленок представлены в табл. 5.14. [c.136]

    Эти катализаторы позволили упростить и облегчить технологию получения многих полимеров. Например, для синтеза полиэтилена без таких катализаторов требовались жесткие условия (давление 1520-10 Па, температура около 180°С). Применяя катализаторы Циглера — Натта, полиэтилен стали получать при давлении, не превышающим 5,06-10 Па, и температуре не выше 60°С. Полиэтилен, синтезированный без катализаторов Циглера — Натта, называют полиэтиленом высокого давления в противоположность полиэтилену низкого давления (с катализатором). [c.397]

    Полиэтилен [—СН,2—СНа—]п — продукт полимеризации этилена. В зависимости от способа получения различают полиэтилен высокого и низкого давления. Полиэтилен низкого давления, получае- [c.414]

    Практически к такой структуре приближается полиэтилен низкого давления со степенью кристалличности 75—80%. Отсутствие боковых групп, способствующее максимальному сближению цепей, создает благоприятные условия для кристаллизации полимера. Полиэтилен, полученный другим способом (под высоким давлением), имеет ответвления от основной цепи, препятствующее сближению цепей. Такой полиэтилен кристаллизуется хуже. [c.23]


    Полиэтилен (—СНг—СН —)п получен в 1933 г. Продукт полимеризации этилена СН2=СНа. В промышленности его получают двух видов при низких давлениях — полиэтилен высокой плотности, при высоких давлениях — полиэтилен низкой плотности эти виды отличаются друг от друга по свойствам. Полиэтилен низкого давления прочнее и тверже, а полиэтилен высокого давления более эластичен, морозостоек. [c.216]

    Основное отличие полиэтилена, полученного этим методом, заключается в почти полном отсутствии разветвленности его молекулярной цепи. Эти особенности определяют его более высокую температуру плавления (125— 130° С) и большую по сравнению с полиэтиленом высокого давления плотность. Поэтому полиэтилен, полученный при атмосферном давлении, называют также полиэтилен высокой плотности (ПВП) в отличие от полиэтилена низкой плотности (ПНП). Полиэтилен низкого давления несколько более стоек к действию некоторых органических растворителей, чем полиэтилен высокого давления, однако по сравнению с последним он имеет несколько худшие диэлектрические свойства. При одинаковом среднем молекулярном весе полиэтилен высокого давления отличается от полиэтилена низкого давления более высокой вязкостью расплава, эластичностью и морозостойкостью. [c.382]

    Полиэтилен низкого давления отличается от полиэтилена высокого давления меньшей разветвленностью цепей и большей плотностью. Поэтому часто продукт, полученный при низком давлении, называют полиэтиленом высокой плотности, а полимер высокого давления —полиэтиленом низкой плотности. [c.326]

    При охлаждении полиэтилена происходит постепенная кристаллизация от скорости охлаждения зависят размеры образуюш,ихся кристаллитов и в известной степени их количество быстрое охлаждение, закалка расплавленного полиэтилена до температуры ниже 60—70°, приводит к твердой форме полиэтилена с большим количеством аморфного материала. При 20° в полиэтилене, полученном при высоком давлении, 55—65% материала имеют кристаллическое строение, а в полиэтилене низкого давления — 65—85% материала. [c.766]

    Полученный по такому способу полиэтилен по свойствам отличается от полиэтилена высокого давления — обладает большей плотностью, большей прочностью, повышенной теплостойкостью, и в некоторых областях применения предпочтительнее использовать полиэтилен низкого давления, в других — полиэтилен высокого давления. [c.779]

    Простейшим и наиболее часто применяемым полимером является полиэтилен. Его получают двумя методами. Полиэтилен высокого давления с точкой плавления около 110° С синтезируют более старым радикальным методом. Новый ионный метод дает продукт с точкой плавления около 140° С это полиэтилен низкого давления или высокой плотности . Вторым способом получают более высокоплавкий неэластичный материал. Радикальный метод применяют для получения прозрачного полиэтилена. По этому методу этилен нагревают до 200° при 1000 атм в присутствии небольшого, строго определенного количества воздуха или перекиси, а полиэтилен непрерывно отводят из реакционной смеси. Воздух или перекись при взаимодействии с этиленом дают радикалы [реакция (15.1)]. Затем первичные радикалы присоединяются к мономеру, инициируя полимеризацию [реакция (15.2)]. Полученные таким образом радикалы, каждый из которых содержит одну мономерную ячейку, соединяются между собой, образуя димер, тример и т. д. [c.225]

    Известно, например, что полиэтилен, полученный полимеризацией при низком давлении в присутствии комплексных металлоорганических катализаторов, обладает значительно большей прочностью, чем полиэтилен, полученный при высоком давлении. Это связано с тем, что макромолекулы полиэтилена высокого давления имеют сравнительно большое количество разветвлений, в то время как полиэтилен низкого давления почти не разветвлен. [c.204]

    Полиэтилен низкого давления (высокой плотности), полученный на гомогенных катализаторах [c.29]

    Полиэтилен, полученный последними двумя способами (полиэтилен низкого давления), имеет строго линейное строение, более высокий молекулярный вес до 70 000 и температуру плавления на 20 °С более, чем полиэтилен высокого давления с несколько разветвленной структурой. [c.571]

    Рутениевые катализаторы обладают свойствами, которые не удалось улучшить ни промоторами, ни носителями, и отличаются высокой стабильностью так, например, при испытании при 195° С и 100 атм в течение 6 месяцев не было обнаружено изменений в выходах и в распределении продуктов реакции [4]. Для образования твердых парафинов при температурах ниже 220° С необходимы высокие давления при температуре 180° С с повышением давления от 50 до 1000 атм степень превращения СО в твердые парафины возрастает от 46 до 50%, а превращение ее в жидкие и газообразные продукты уменьшается [4]. При температурах ниже 150° С и давлениях 1000—2000 атм на рутениевом катализаторе получают высокомолекулярный парафин — полиметилен, у которого имеется большое сходство с полиэтиленом низкого давления [5, 126, 127]. Распределение полиметилена по молекулярным весам зависит от давления и температуры. При одном и том же давлении снижение температуры способствует увеличению молекулярного веса. При 100—120° С и 1000—2000 атм полученный парафин имеет молекулярный вес 15000— 20000 и содержит в небольшом количестве парафины с мол. весом 1000000 и более. [c.140]


    В предыдущих работах [3, 4] описывалась возможность получения в полиэтилене низкого давления спиральных структур. Следует отметить, что наряду со спиральными структурами образуются полосатые и пластинчатые структуры. Полосатые структуры состоят из параллельно расположенных плоскостей. В том случае, если эти плоскости соединяются между собой, образуя сплошную структуру, возникают спирали. [c.143]

    В последнее время показано, что полимер, аналогичный полиэтилену низкого давления, может быть получен из окиси углерода и водорода с рутениевыми катализаторами. Полимер получается при взаимодействии смеси Нг и СО в соотношении 2 1 при температуре между 100 и 140° С при давлении 1000 ат в присутствии катализатора рутения. При этом образуется полимер состава (СНг) с молекулярным весом в зависимости от условий полимеризации от 25 ООО до 105 ООО. Температура плавления полимера достигает 134° С, его цени почти не имеют разветвлений, он имеет высокую кристалличность. [c.92]

    Другой причиной различия полиэтилена низкого, среднего и высокого давления является неодинаковая разветвленность цепи макромолекул и, как следствие этого,— различная Степень кристалличности полиэтилена. При получении полиэтилена высокого давления при 1000—1500 ат и температуре 170—200° С в присутствии кислорода и перекисей практически всегда происходит разветвление цепей. Исследование структуры полиэтилена при помощи инфракрасных спектров показало, что в полиэтилене высокого давления примерно на 100 атомов углерода главной цепи приходится два ответвления в виде метильных групп или более сложных боковых цепей, в полиэтилене низкого давления в среднем — два на 1000 атомов углерода, а у полиэтилена, полученного с растворимыми катализаторами (см. стр. 75), разветвленность еще в 4—10 раз меньше, т. е. может составлять два разветвления на 10 ООО атомов углерода..  [c.103]

    Полиэтилен — продукт полимеризации этилена. В зависимости от условий получения полиэтилен может иметь различный молекулярный вес, плотность, степень кристалличности. Соответственно полиэтилены различают по маркам полиэтилен высокого давления (ВД) или низкой плотности и полиэтилен низкого давления (НД) или высокой плотности и полиэтилен среднего давления (СД). [c.145]

    Сначала укажем на полиэтилен низкого давления, который уже приобрел широкое применение его получение по способу Циглера [49] основано на использовании в качестве катализаторов полимеризации алюминийорганических соединений с добавкой четыреххлористого титана. [c.18]

    Образующиеся высшие алюминийтриалкилы при гидролизе дают смесь н-углеводородов с четным числом углеродных атомов. Однако эти углеводороды имеют сравнительно небольшую молекулярную массу. Для получения высокомолекулярных полимеров, имеющих регулярное строение, был предложен катализатор (К. Циглер, Дж. Натта), в состав которого наряду с триалкилалюминием входит соль титана (Т1С14), увеличивающая во много раз полимери-зующую активность триалкилалюминия. Под влиянием такого катализатора [А1 (С2Н5)з + ИСЦ] полимеризация, например, этилена идет при обычном или небольшом давлении (полиэтилен низкого давления (см. с. 397). [c.177]

    Полиэтилен низкого давления получают двумя методами периодическим и непрерывным. По второму методу, более производительному, этилен и катализатор, распределенный в низкоки-пящем бензине, подают в реактор непрерывно. Полимеризация протекает под давлением 3—4 ат при 80 С. Непрореагировавший этилен и бензин поступают на очистку, а продукт полимеризации — на переработку. Она заключается в отделении бензина с помощью центрифуги и. многократной промывке полимера в аппаратах при непрерывном перемешивании с помощью метилового или н-пропилового спирта. Полученный порошок полиэтилена сушат в вакуумных сушилках. [c.95]

    Влияние давленая. С повышением давления значительно увеличивается скорость полимеризации, так как при этом возрастает число столкновений активных центров с мономерами. Повышение давления позволяет понизить температуру полимеризации, а следовательно, получить продукты с более высоким молекулярным весом. Процесс полим изации бутадиена при 7000 ат и 48 С продолжается 46 ч (на 95%), При 61" С —всего 19 ч, а при 1 ат полимеризация продолжается сотии суток (в отсутствие катализатора). Однако вопрос о применении повышенных давлений при полимеризации должен решаться всегда совместно с выбором катализаторов. Так. полиэтилен, получавшийся раяее только иод давлением 1000—2000 ат (полиэтилен высокого давления), может быть получен по способу Циглера при использовании в качестве катализаторов триэтилалюминия и хлоридов титана и при нйзком давлении (полиэтилен низкого давления). [c.45]

    Оценка плотности упаковки макромолекул в переходных слоях в зависимости от условий получения композиций может быть проведена методом молекулярного зонда [419]. Были изучены два бинарных сплава аморфный атактический полистирол с добавлением 10—50% изотактического полипропилена и полиэтилен низкого давления с 5—507о изотактического полипропилена. В качестве мо-лекул-зондов использовали антрацен, концентрация которого в композициях составляла 10 . Компоненты сплавляли и охлаждали при различных режимах медленное охлаждение со скоростью 3 °С/мип, быстрое охлаждение до комнатной температуры и закалка в жидком азоте. [c.206]

    Полиэтилен—термопластичный полимер. Исходный мономер — этилен С2Н4 — получают из природных газов. Получение полимера может быть осуществлено по методу высокого или низкого давления. Полиэтилен высокого давления имеет молекулярную массу 1800-2500, полиэтилен низкого давления — 2500-3500. Последний обладает более высокими прочностными показателями и химической стойкостью. При обычной температуре полиэтилен представляет собой твердый упругий материал, сохраняющий свои свойства до 60-70 °С. При температурах 110-120 °С он приобретает высокую эластичность. [c.242]

    Важным преимуществом ионно-координационной полимеризации является стереоспецифичность в ее ходе образуются стереорегулярные (изотактинеские) полимеры. Полимеры, полученные в этих условиях, отличаются высоким качеством. Полиэтилен низкого давления имеет более высокую плотность и температуру плавления по сравнению с полиэтиленом [c.292]

    Многочисленные работы, посвященные изучению структуры полимеров, дают возможность представить весь путь возникновения сложных структур в полимерах, осуществляющийся через ряд промежуточных стадий. ]Депные молекулы образуют пачки цепей пачки упаковываются в ленты или плоскости, а из них уже строятся более сложные вторичные структуры [1]. Многоступенчатый характер возникновения структур и последовательность отдельных стадий лучше всего известны пока для полиэтилена [2]. Однако надо отметить, что в большинстве работ по морфологии полиэтилена рассматриваются только единичные кристаллы и сферолиты, хотя этим не исчерпывается все многообразие вторичных структур. Ранее нами было показано, что в зависимости от способов получения полиэтилена (низкого давления, высокого давления и радиационного) процессы структурообразования в них протекают различно [3]. Настоящая работа посвящена вопросу образования вторичных структур в полиэтилене низкого давления. [c.143]

    В предыдущей работе [1] при изучении условий возникновения вторичных структур в полиэтилене низкого давления не учитывалось влияние молекулярного веса полимера. По-видимому, именно это обстоятельство затрудняло получение монокристаллов полиэтилена в условиях быстрого испарения растворителя. Если считать, что основной структурной единицей при образовании и росте кристалла является пачка цепей полимера, то можно было предположить, что для построения монокристалла полимера необходимо наличие однородных не только по строению, но и по величине структурных единиц. Широкое же распределение молекул полимера по молекулярным весам в нефракционировапном полимере будет, очевидно, препятствовать однородному построению пачки, что, в свою очередь, окажет влияние иа дальнейший процесс структурообразования. [c.149]

    Оказалось, что фракции полиэтилена с мол. весом от 21 ООО до 300 ООО образуют в растворе одинаковые вторичные структуры в одном и том же интервале температур. При нанесении кипящего ксилольного раствора на подложку при комнатной температуре получаются кристаллы дендритного характера (рис. 1). Начиная с 40 и до 90° на подложке образуются пластинчатые кристаллы пирамидальной формы, хорошо известные в литературе [5]. На рис. 2 представлена типичная микрофотография, полученная для полиэтилена мол. веса 21 ООО при 70°. На большой плоскости основания, имеющего ромбовидную форму, расположено много более мелких пирамидальных кристал.)1ов. Отдельные слои, образующие соседние кристаллы, перекрываются, 1ю мешая друг другу. На рис. 3 (мол. вес 21 ООО, температура подложки 90°) хорошо видно, что рост кристаллов идет до дислокационному механизму. На рис. 4 приведена микродифракция, снятая с участка монокристалла полиэтилена. Кристаллы получаются в фракционированном полиэтилене низкого давления мо.л. веса от 21 ООО до 300 ООО при температуре подложки от комнатной до 100°. Кроме того, интересно отметить, что изменение концентрации раствора полимера в пределах от 0,001 до 0,1% не сказывается на характере вторичных образований в зависимости от температуры. На рис. 5 (мол. вес 30 ООО, температура 90°) отчетливо видны кристаллы, полученные из 0,1 %-ного ксилольного раствора. Эти кристаллы менее совершенны, чем возникшие в более разбавленном растворе (см. рис. 2). На микрофотографии можно рассмотреть, что утолщения и наросты располагаются чаще всего по краям плоскости основания. Таким образом, фракционированный полиэтилен с мол. весом до 300 ООО при сравнительно низких температурах (до 100°) дает пластинчатые кристаллы. Очевидно, что регулярное строение и одинаковый размер молекулярных цепей значительно облегчают условия образования однородных структурных единиц, что ведет, в свою очередь, к быстрому упорядочению их в более высоко организованные структуры. Выше 100° возникают структуры, подобные структурам в нефракционировапном полиэтилене при этой же температуре [1]. На снимках (рис. 6) появляются полосатые структуры и ленты. Возникшие кое-где плоскости часто образуют завихрения, подобные зародышам сферолитов. Это совпадает с данными Ли Ли-шен, Андреевой и Каргина [6], показавшими, что при 100° происходит резкое ослабление сил связи между отдельными лентами, образующими кристаллы. Начиная с мол. веса ЗОС) ООО и выше характер вторичных структур изменяется. При температуре подложки от комнатной до 90° наряду с пластинчатыми образованиями возникают хорошо сформированные спиралеобразные структуры. На рис. 7 дана микрофотография раствора полиэтилена низкого давления мол. веса 360 ООО при 70°. Одновременно с пластинками хорошо видны типичные спирали. Легко можно рассмотреть, как утолщенные места спирали перерастают в плоскости. Местами видны полосатые структуры. Возникшие спиралевидные образования довольно гибки (рис. 8 мол. вес 30 ООО, температура 90°). [c.150]

    Трементоцци [17] фракционировал полиэтилен высокого давления на 17 фракций, а полиэтилен низкого давления — на 12 фракций и определил их расиределение по молекулярным весам. Он также измерил молекулярный вес нефракционированного полимера методом светорассеяния и осмометрическим методом и установил, что соотношение Му, Мп для полиэтилена низкого давления равно приблизительно 2. Это свидетельствовало об отсутствии разветвлений с длинной цепью. Однако для полиэтилена высокого давления соотношение изменялось от 7 до 100, что указывало на присутствие большого числа боковых цепей. Полученные данные Трементоцци использовал для доказательства того, что второй вириальный коэффициент для разветвленного полимера меньше. Однако Мусса и Бильмейер [18] определили молекулярные веса нефракционированного полиэтилена высокого давления методом седиментации (ультрацентрифугирование), светорассеяния и осмометрическим методом. На основании полученных ими данных, соотношения Му, Мп составляют 11—18, что указывало на образование значительного числа разветвлений с длинной цепью. [c.249]

    В среде различных органических соединений полимеры этилена в зависимости от способа их получения набухают в различной степени. Например, в кипящем бензоле полиэтилен высокого давления растворяется, а полиэтилен низкого давления лишь набухает. Галлоидуглероды действуют на полиэтилен аналогично бензолу. Полиэтилены марлекс и хостален обладают высокой газонапроницаемостью. [c.127]

    Развитие мжрового производства полиэтилена с 1960 по 1964 г. характеризуется следующими цифрами (в тыс. г) 1960 г.— 963,6, 1961 г.— 1206, 1962 — 1580 и 1964 г.— 2349. До 1958 г. производство полиолефинов складывалось главным образом из полиэтилена высокого давления, так как производство полиэтилена низкого давления и полипропилена еще только налаживалось. Однако и в последние годы полиэтилен высокого давления занимает первое место. Правильное представление о соотношении Производства полиолефинов имеет большое значение для того, чтобы оценить значение отдельных видов полиолефинов. Так, например, из полиолефинов, полученных в США в 1963 г., на полиэтилен высокого давления приходилось 70 %, на полиэтилен низкого давления — 20 % и полипропилен—10%. Производственные мощности предприятий по производству полиэтилена высокого, низкого давления и полипропилена в различных странах приводятся в табл. 33. [c.62]

    В приборах с программированием температуры колонки циклически нагреваются в широкой области температур, и указанные факторы приобретают большое значение, особенно в отношении дрейфа нулевой линии. Максимальная тегипера-тура, до которой колонка может нагреваться в отдельных случаях, определяется указанными св011ствами жидкой фазы. Этот верхний температурный предел для различных материалов, нанесенных на целит, определяется с помощью термогравиметрических весов [3]. Результаты, полученные для некоторых насадок при нагревании со скоростью 5° С/мин в атмосфере азота, представлены на рис. ХУ-8. Наилучшие термические свойства показали полиэтилен низкого давления марки Мар-лекс , апиезон Ь и силиконовая смазка. [c.356]

    Гильхрист [263] видит подтверждение своей схемы в том, что продукты радиолиза ИСЬ полимеризуют этилен в отсутствии других веществ, точно так же смесь этилена и паров ТЮ14 при получении ультрафиолетовым светом дает полиэтилен низкого давления. [c.38]

    Полиэтилен низкого давления уже приобрел широкие права гражданства [41, 42 246]. Получение полиэтилена низкого давления по способу Циглера [485, 486] основано на использовании в качестве катализаторов полимеризации алюминийорганических соединений с добавкой Ti U. Полимеры, получаемые с этими катализаторами, не имеют разветвлений, что отражается на их физических свойствах. Так, обычный разветвленный полиэтилен высокого давления плавится при температуре 107—120°, в то время как разветвленный полимер, полученный при низком давлении по методу Циглера, плавится при температуре 130—138°. Полипропилен плавится при температуре 165—175°, в то время [c.73]


Смотреть страницы где упоминается термин Полиэтилен низкого давления получение: [c.78]    [c.205]    [c.501]    [c.677]    [c.183]    [c.339]    [c.219]    [c.45]    [c.860]    [c.424]    [c.66]   
Полиолефиновые волокна (1966) -- [ c.32 , c.33 ]




ПОИСК







© 2024 chem21.info Реклама на сайте