Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Платиновые металлы, определени

    Согласно этой теории, катализ происходит только при структурном и энергетическом соответствии катализируемых молекул данному катализатору. Теорией Баландина было предсказано, что реакции каталитического гидрирования бензола и дегидрирования циклогексана могут идти только на переходных металлах, имеющих гранецентрированную кубическую структуру или гексагональную структуру и притом атомные радиусы строго определенных размеров. При этих условиях шестичленные циклы образуют на октаэдрических гранях кристаллов металла шесть связей М— — С — С, валентный угол которых близок тетраэдрическому углу. Данным условиям удовлетворяют палладий, платина, иридий, родий, осмий и все они являются активными катализаторами гидрирования бензола и дегидрирования циклогексана. В то же время металлы, обладающие объемноцентрированной структурой, например тантал, вольфрам, даже при почти таких же размерах их атомных радиусов, как у платиновых металлов, а также металлы, имеющие такую же кристаллическую структуру, как платина, но иные размеры атомных радиусов, в частности серебро, золото, или не относящиеся к переходным элементам — медь, цинк,—все эти металлы не проявляют каталитической активности в вышеуказанных реакциях. Таким образом, структура поверхностных соединений бензола и циклогексана с платиновыми металлами была описана и доказана. Мало того, было, в сущности, установлено, что в условиях катализа подобные соединения легко и притом в точности воспроизводятся. Иначе катализ был бы невозможен. [c.59]


    Для обратимых электродов определение заряда на основе уравнения (15.1) становится затруднительным из-за возможности перехода ионов через границу раздела фаз. Для металлов платиновой группы, а также металлов группы железа и ряда других возникает еще дополнительное осложнение, связанное с тем, что частичный перенос заряда адсорбированных ионов уже нельзя не учитывать. В пользу переноса заряда свидетельствуют данные по кинетике адсорбции и обмена ионов. Скорости адсорбции и обмена оказываются сравнительно небольшими, а адсорбционное равновесие устанавливается от нескольких минут до многих часов. Для сравнения отметим, что время образования двойного слоя на ртутном электроде в растворах неорганических солей обычно не превышает миллионных долей секунды. На перенос заряда указывают большие величины адсорбций ионов на платиновых металлах. [c.71]

    Для обратимых электродов определение заряда на основе уравнения (15.1) становится затруднительным из-за возможности перехода ионов через границу раздела фаз. Для металлов платиновой группы, а также металлов группы железа и ряда других возникает еще дополнительное осложнение, связанное с тем, что частичный перенос заряда адсорбированных ионов уже нельзя не учитывать. В пользу переноса заряда свидетельствуют данные по кинетике адсорбции и обмена ионов. Скорости адсорбции и обмена оказываются сравнительно небольшими, а адсорбционное равновесие устанавливается от нескольких минут до многих часов. Для сравнения отметим, что время образования двойного слоя на ртутном электроде в растворах неорганических солей обычно не превышает миллионных долей секунды. На перенос заряда указывают большие величины адсорбций ионов на платиновых металлах. Перенос заряда вытекает также из данных по изучению сверхэквивалентной адсорбции ионов на платиновых металлах. Так, на платине в отличие от ртути заряд сверхэквивалентно адсорбированных анионов возрастает в ряду S0 < I < l" < Вг" и при изменении потенциала электрода или остается постоянным, или уменьшается, что можно объяснить возрастанием переноса заряда при росте потенциала. Об этом свидетельствуют данные по адсорбции катионов при положительных зарядах поверхности (рис. 39) при сдвиге потен- [c.77]

    С другой стороны, на электродах из металлов платиновой группы процессы частичного или даже полного разряда ионов при их адсорбции нельзя не учитывать. Перенос заряда доказывают данные по кинетике адсорбции и обмена ионов. Так, например, адсорбционное равновесие в растворах неорганических солей на платиновом электроде устанавливается за время от нескольких минут до многих часов, тогда как в тех же растворах на ртутном электроде время формирования двойного слоя обычно не превышает миллионных долей секунды. Трудности, связанные с определением и трактовкой частичного переноса заряда при специфической адсорбции ионов, являются одной из причин того, что модельная картина строения двойного слоя на платиновых металлах разработана в значительно меньшей степени, чем на электродах типа ртути, свинца и висмута. [c.166]


    Другая причина состоит в том, что на платиновых металлах в определенных интервалах потенциала происходит адсорбция водорода за счет реакций [c.198]

    Для платиновых металлов в соединениях характерны практически все степени окисления от О до +8. При этом отмечается тенденция к понижению максимальных степеней окисления в горизонтальных рядах. В вертикальных диадах обычно наблюдается соответствие степеней окисления. Так, элементы первой диады (Ки—Оз) могут проявлять максимальную степень окисления +8 (даже в соединениях первого порядка), элементы второй диады (КЬ—1г) достигают степени окисления +6 (в комплексных соединениях), а палладий и платина имеют типичные степени окисления +2 и +4. Элементы первой диады напоминают по свойствам элементы УПВ-группы — технеций и рений (подобно тому как железо напоминает марганец). Элементы же последней диады проявляют определенное сходство с элементами 1В-группы— серебром и золотом (подобное сходству между никелем и медью). [c.417]

    Комплексные соединения имеют большое значение в химической промышленности. Они применяются для получения и очистки платиновых металлов, золота, серебра, никеля, кобальта, меди. Широко используются в процессах разделения редкоземельных элементов, в гальваностегии для электролитического получения плотных и прочных покрытий, а также в области химического анализа для обнаружения и количественного определения многих элементов. [c.207]

    Академик И. С. Курнаков выполнил классические исследования комплексов металлов с тиомочевиной и гуанидином, проф. Л. А. Чугаев изучил комплексы металлов с оксимами. Реактив Чугаева — диметил-глиоксим является в настоящее время лучшим реактивом для определения никеля. Синтезированы и исследованы комплексные соединения платиновых металлов с тиомочевиной и другими лигандами. Академиком И. И. Черняевым открыто явление трансвлияния. Г. Лей в 1904 г. исследовал гликолевые соединения меди. Работы Л. А. Чугаева и Г. Лея положили начало глубоким исследованиям внутрикомплексных соединений. Это направление продолжает развиваться и в настоящее время. [c.236]

    Платиновые металлы 3/1131. См. также Благородные металлы. Платина определение 2/187, 1224 3/62, 703, 1133, 1134 4/184, 530,531 получение 1/1104 2/184 3/4, 1133  [c.681]

    Об определении алюминия в сплавах золота см. работу [830], а об определении в платиновых металлах — работы [20, 60]. [c.159]

    Знаменитый шведский химик Я. Берцелиус (1779—1848) продолжал линию И. Рихтера, на основе анализа оксидов он определил атомные веса почти всех известных тогда элементов, ввел символы элементов, химические формулы, активно проводил аналитические расчеты на основе правил стехиометрии. Берцелиус стоял у истоков метрологии анализа. Он оценивал ошибки определений, разработал точные методы взвешивания, ему принадлежит методика определения платиновых металлов. Шведский ученый пытался создать новую схему качественного анализа. При анализе силикатов Берцелиус применил фтористоводородную кислоту — прием, широко используемый и по сей день использовал возгонку хлоридов дпя разделения металлов. [c.16]

    Реагент рекомендован для спектрофотометрического определения иридия в присутствии платиновых металлов, кроме родия и рутения. [c.39]

    Определению рутения (III) не мешают многие элементы, включая платиновые металлы. [c.46]

    Определение осмия в щелочных плавах платиновых металлов [c.50]

    Определению осмия (VI) не мешают рутений и платиновые металлы. [c.51]

    Реагент применяют для обнаружения [878], гравиметрического [769, 1383], титриметрического 75, 192, 204, 212, 400, 495, 513, 779, 1078, 1231, 1232, 1310, 1398, 1400], потенциометрического [18, 472, 514, 910, 911], амперометрического [493, 494] определения золота и для его отделения от платиновых металлов [769], Se, Те [1383] и Re [981]. Аскорбиновая кислота восстанавливает Au(III) до металла [1422]  [c.58]

    Исследована чистота осадка в случае отделения золота при помощи гидрохинона в ходе анализа свинцового сплава, содержащего платиновые металлы [14]. Ошибка меньше, чем при определении золота в серебряном корольке, полученном из свинцового сплава. [c.77]

    Применение разнолигандных комплексов во многих случаях приводит к повышению селективности, контрастности реакций, улучшению экстракционных и других свойств. Приведем несколько примеров. Определение малых количеств тантала в присутствии больших количеств ниобия — очень трудная задача. Однако эта задача была успешно решена с применением экстракционно-фотометрического метода определения тантала в виде ионных ассоцнатов гекса фторид ноге комплекса тантала с основными красителями. Аналогичную трудность испытывали аналитики при определении малых количеств рения в присутствии больших количеств молибдена. Только применение экстракции с трифенилметановыми красителями дало возможность определять очень малые количества рения в молибдене или молибденовых рудах с довольно низким пределом обнаружения. Это же относится к определению осмия в присутствии других платиновых металлов, определению бора и других элементов. Введение второго реагента часто приводит к улучшению экстракционных свойств комплексов и снижению предела обнаружения. Так, дитизонат никеля очень плохо экстрагируется неводными растворителями. Для полной его экстракции тетрахлоридом углерода требуется примерно 24 ч. Если же ввести третий компонент — 1,10-фенантролин или 2,2 -дипиридил, то комплекс экстрагируется очень быстро, а предел обнаружения никеля снижается в пять раз. [c.299]


    Роданистый калий (аммоний). К исследуемому раствору, слабо подкисленному азотной кислотой, прибавляют кристаллы роданистого калия или роданистого аммония. Продукт реакции экстрагируют эфиром или амиловым спиртом. Растворитель окрашивается в синий цвет. Чувствительность реакции 1 мкг/мл. Осмий (IV) не дает этой реакции. Другие платиновые металлы определению не меашют [I, 45]. [c.84]

    Точку эквивалентности определяют либо визуально — обратным титрованием избытка соли Мора перманганатом, либо потенциометрически, Из платиновых металлов определению мешает иридий. [c.156]

    ВИДНО, могут сильно отличаться по составу от исходных органических молекул. Поэтому обычно используемый термин адсорбированное исходное вещество (адсорбированный метанол, этан и т. д.) в случае платиновых металлов, как правило, является условным. Установление стехиометрии (т. е. соотнощения элементов) хемосорбированного слоя и хемосорбированных частиц — непростая задача, которая может быть рещена лишь комплексом электрохимических и аналитических методов. Определение же состава и особенно структуры адсорбированных частиц требует привлечения других методов, из которых наиболее перспективными представляются оптические методы. [c.87]

    Для Сг (III) характерна преимущественная координация азот- н кислородсодержащих аддендов, с которыми он образует прочные ковалентные связи. Однако эти связи отличаются меньшей прочностью, чем в соединениях платиновых металлов. Следствием этого является возможность проявления оптической и геометрической изомерии. Вследствие значительной стереохи-мической определенности этих соединений и высокой степени ковалентности связи центральный ион — адденд возможно, что химические свойства этих соединений окажутся объясненными с позиций закономерности трансвлияния. Однако для окончательного суждения о справедливости этой закономерности в химии хрома требуется систематическое исследование соединений Сг (III), Примеры основных типов комплексов Сг (III) даны в табл, 64. В шестивалентном состоянии хром дает многочисленные изополисоединения, например КгСгзОю. [c.208]

    Реакции замещения лигандов в координационных соединениях платиновых металлов протекают медленно, что затрудняет концентрирование, выделение и определение благородных металлов, в частности, родия. Все реакции базирующиеся на образовании комплексов и используемые в технологии и аначизе платиновых металлов, протекают во времени и нагревании. В работах [1-3] показана перспективность использования роданида, тиомочевины, цитрата для извлечения платиновых металлов. Из литературы [4,5] известно, что добавление в сульфатные электролиты родия сульфаминовой кислоты стабилизирует раствор, а сульфосалициловая кислота является лигандом -комплексообразователем, способным образовывать с ионами металлов хелатные структуры, устойчивость которых обычно больше, чем монодентатных комплексов [6]. В работе использовапи метод классической, тает- и переменнотоковой полярографии и метод кислотно-основного титрования. [c.89]

    Получают из 3-нитрофталевой к-ты. Л.-хемилюминесцентный индикатор при кислотно-основном, окислит.-восстановит. (броматометрия и др.) и комплексонометрич. титровании. Применяют для хемилюминесцентного определения микроколичеств H Oj и ее своб. радикалов, K,[Fe( N)6], S O,, СЮ , МпО, lj, Вг , гемоглобина u(II), Со(П), N (IIJ, Fe(II), Mn(II), Ag(I), Ti(IV), Zr(lV), Hf(IV), Th(IV), e(IV), V(V), r(III), Sb(V), платиновых металлов  [c.616]

    Если королек содержит платиновые металлы, анализ его хим. методами представляет сложный и длительный процесс. Получили распространение комбинир. методы анализа с использованием пробирного концентрирования, т.е. определение благородных металлов (в т. ч. Pt, Pd, Rh, Ir, Ru) B корольке или свинцовом сплаве (масса 0,1-2 г) методами эмиссионного спектрального, атомно-абсорбц., активац, фотометрич. анализа и др. Пределы обнаружения Au при этом достигают 0,005 г/т, Ag-0,1 г/т. [c.96]

    Следует отметить, что для всех без исключения структурно изученных протонированных комплексонатов подгруппы платины протонирование карбоксилатных групп ЭДТА всегда препятствует их участию в координации, что в значительной мере отличает комплексонаты этих элементов от протонированных этилендиаминтетраацетатов меди, никеля, лантаноидов Это обстоятельство, являющееся дополнительным свидетельством повышенного сродства платиновых металлов к атомам азота и пониженного по отношению к атомам кислорода карбоксилатных групп, позволяет с большой степенью надежности применять ИК-спектроскопию для определения дентатности лигандов в комплексонатах обсуждаемых элементов [291—293] [c.157]

    Оценивая стоимость анализа, учитывают также стоимость и доступность реактивов время, затрачиваемое на обнаружение шш определение одного компонента массу анализируемой пробы, особенно в тех случаях, когда дорогостоящим является сам материал анализируемого объекта (сплавы и слитки платиновых металлов, золота и т. п.). При прочих равных условиях для решешм поставленной задачи следует выбирать наиболее дешевые метод и методику проведения аналюа. [c.29]

    Следует отметить, что полимерный третичный амин извлекает платиновые металлы без нагревания и введения лабилизирующих добавок типа 8пС12. Полимерные гетероцепные сорбенты тфименяют также для извлечения тяжелых металлов из природных вод и других объектов определение металлов в концентрате осуществляют методами рештенофлуоресцентной и атомно-абсорбционной спектроскопии. [c.246]

    Глицинтимоловый синий предложен для спектрофотометрического определения малых количеств палладия в чистых платиновых металлах и их соединениях [18]. [c.15]

    Определению мешают ЭДТА и тиомочевина. Платиновые металлы маскируют с помощью F л цитрат- и тартрат-ионов. [c.54]


Смотреть страницы где упоминается термин Платиновые металлы, определени: [c.365]    [c.167]    [c.198]    [c.404]    [c.235]    [c.366]    [c.168]    [c.185]    [c.98]    [c.35]    [c.356]    [c.571]    [c.269]    [c.19]    [c.50]    [c.113]   
Полярографический анализ (1959) -- [ c.372 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы платиновые, определение

Платиновые металлы



© 2025 chem21.info Реклама на сайте