Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рений на носителях

    Авторское свидетельство СССР № 775880. Катализатор для риформинга бензиновых фракций, включающий платину, хлор, рений, кадмий и носитель, отличающийся от прототипа тем, что, с целью повышения активности и селективности катализатора, в качестве носителя он содержит сульфированную окись алюминия при следующем содержании компонентов, вес.% /23/  [c.35]


    I) металлы в чистом виде (платина, палладий, никель, рений, родий, рутений и др.) или на носителях  [c.234]

    В настоящее время риформинг осуществляют преимущественно на бифункциональных катализаторах, сочетающих кислотную и гидрирующую — дегидрирующую функции. В промыщленности применяют следующие катализаторы платиновые (носитель — окись алюминия, промотированная фтором или хлором алюмосиликат цеолит и др.) полиметаллические, содержащие кроме платины также рений, иридий, свинец, германий, олово и другие металлы (носители те же). [c.256]

    Существуют и другие разновидности процесса диспропорционирования олефинов, как правило, на гетерогенных катализаторах — окислах Сг, Ш и Ке на различных носителях, чаще всего АЬОз или 8102. Ограниченность ресурсов рения не дозволяет оправдывать его применение. Следует обращать внимание на способ приготовления носителей. Так, каталитическая активность катализатора МоОз-5102 возрастает после обработки алюминийорганическими соединениями. [c.12]

    В отличие от каталитического крекинга, при каталитическом ри-форминге используют катализаторы гидрирования-дегидрирования (платина, промотированная добавками рения, иридия, германия, олова и т.д.), нанесенные на носитель (оксид алюминия с добавками хлора), которые проявляю кислотно-каталитические свойства, приводящие к реакциям изомеризации. [c.20]

    Калибровка детекторов. Интенсивность сигнала детектора зависит как от свойств детектируемого соединения, так и от детектирующего устройства. Поэтому в принципе она может быть рассчитана, а следовательно, и положена в основу количественных изме- рений. Однако современное состояние теории детектирования позволяет делать такие расчеты лишь для небольшого числа типов детекторов. Так, например, для детектора по плотности концентрация анализируемого вещества может быть рассчитана по величине сигнала (например, по площади пика), если известна молекулярная масса применяемого газа-носителя. Для детектора по сечению ионизации количество вещества вычисляется по площади пика и сечению ионизации молекул анализируемых соединений и газа-носителя. [c.45]

    К биметаллическим катализаторам относится платино-рениевый, в котором на тех же носителях находятся оба металла в количествах, примерно равных (по -0,4% мае.). Присутствие второго металла (рения) препятствует рекристаллизации платины — укрупнению ее кристаллитов с течением времени и, соответственно, уменьшению числа ее активных центров. Промышленный процесс на этом катализаторе назвали рени-формингом. Платино-рениевый катализатор позволяет вести процесс при 470-500°С и 1,4-2,0 МПа. Кроме рения, в качестве второго металла используют германий, иридий, родий, олово и свинец. [c.127]


    В последнее время для точного измерения скорости потока широко применяется пенный измеритель скорости потока (рис. 17). Он обеспечивает высокую точность измерения скорости потока (но рядка 1%). В этом состоит его преимущество перед реометром Он состоит из соединенных тройником 2 градуированной бюретки и небольшой резиновой груши 3 с мыльным раствором. Для изме рения скорости потока один конец тройника присоединяют к выходной линии хроматографической установки и, нажав на грушу, вводят мыльную пену в бюретку. С помощью секундомера определяют время, за которое мыльная пленка проходит расстояние между двумя калибровочными метками на бюретке. Рассчитывают объемную и линейную скорости потока (в мл мин и см сек) при различных давлениях газа-носителя на входе в колонку. [c.33]

    Для диспропорционирования предложены различные катализаторы. Наиболее активными являются окислы вольфрама, молибдена и рения, нанесенные на окись алюминия или окись "кремния. Используются также сульфиды и гексакарбонилы молибдена или вольфрама на носителях. Диспропорционирование олефинов в зависимости от применяемого катализатора осуществляется при температуре 200—600 °С, давлении 0,01—10,5 МПа и времени контакта 0,1—60 с. [c.59]

    На колонках с носителем фторопласт-4 был выполнен ряд разделений, среди которых представляет интерес выделение золота и таллия из сложных смесей [132], разделение редкоземельных элементов [133], выделение рения из различных циклотронных мишеней [134]. [c.176]

    В каталитическом риформинге применяют гетерогенные бифункциональные катализаторы. Эти катализаторы содержат металлы (платину, платину и рений, платину и иридий), которые инициируют реакции дегидрирования и гидрирования. Носителем катализаторов служит промотированный галогенами оксид алюминия, который обладает кислотными свойствами и катализирует реакции изомеризации и крекинга углеводородов. На катализаторах риформинга также протекают реакции дегидроциклизации парафиновых углеводородов. [c.348]

    Основные минералы — носители рения [c.294]

    Процесс каталитического риформинга осуществляют на бифункциональных катализаторах, сочетающих кислотную и гидрирую-щую-дегидрирующую функции. Гомолитические реакции гидрирования и дегидрирования протекают на металлических центрах платины или платины, промотированной добавками рения, иридия, олова, галлия, германия и др., тонко диспергированных на носителе. [c.533]

    Халькофильные тенденции рения являются его главной геохимической особенностью. Минеральные кларки рения для главных его минералов-носителей выражаются следующими величинами (в г mi)-. [c.12]

    Обычная схема анализа слагается из подготовки образца и эталонов к облучению, непосредственного облучения, радиохимического выделения рения из облученных образцов и эталона, определения выхода носителя, радиохимической чистоты (в основном у-спектрометрически) и расчета содержания рения в анализируемом объекте. [c.170]

    В последнее время начинают применяться радио активационные методы определения рения после предварительного отделения его от основных компонентов [53, 119]. Этот метод имеет то преимущество, что, используя селективные методы отделения, нет необходимости работать в горячих камерах или боксах. В некоторых случаях полученный концентрат либо непосредственно облучают в реакторе, либо сначала соосаждают рений на ложном носителе (висмут особой чистоты). Такого рода методы использовались при анализе пирита [119], пиролюзита и продуктов его переработки [53] и вод Тихого океана [1028, 1159]. Концентрирование во всех случаях проводилось экстракцией кетонами. [c.171]

    Катализаторы риформинга относятся к группе бифункциональных катализаторов и обладают двумя основными функциями дегидрирующей (гидрирующей) и кислотной. И если кислотную функцию выполняет окись алюминия, являющаяся носителем катализатора, то дегидрирующую (гидрирующую) функцию — обычно металлы VIII группы (платина, палладий, рений, германий, иридий и др.). Регулируя соотношение этих функций можно влиять на эффективность катализаторов. [c.10]

    Каталитический риформинг протекает на активных центрах двоякого рода металлических и кислотных. Металлические центры (платина или ш. 1тина, промотированная добавками хЛора и металлов, например рения, иридия, олова, редкоземельных элементов), ускоря ют реакции дегидрирования парафинов в олефины, нафтенов в арома тические, диссоциацию молекулярного водорода, подаваемого извне гидрирование и содействуют дегидроциклизации и изомеризации Кислотные центры, расположенные на носителе - хлорированном оксиде алюминия, способствуют реакциям изомеризации олефинов циклизации и гидрокрекинга по карбоний-ионному механизму. [c.139]

    Повышение стабильности Pt-Re и Pt-Ir катализаторов объясняется тем, что образующийся на этих металлических сплавах атомный водород способствует распаду мультиплетных комплексов, десорбции и транспорту ненасыщенных углеводородов на соседние рений- или иридиевые центры, их гидрированию в более стабильные соединения, препятствуя тем самым закоксовыванию платино-рениевых центров и способствуя поддержанию большей скорости спилловера водорода. Поэтому отложение кокса происходит главным образом на более удаленных от биметаллических кластеров участках носителя, где концентрация водорода спилловера мала. Этим можно объяснить тот факт, что на катализаторах Pt-Re и Pt-Ir/Al203 риформинг можно осуществлять до накопления в нем 12, а иногда 20% (мае.) кокса. [c.154]


    Таким образом, модифицирующее действие соединений рения и иридия заключается в образовании сплавов с платиной, увеличением энергии распада мультиплетного комплекса и десорбции непредельных, которые, попадая на металлические участки рения или иридия, гидрируются за счет спилловера атомного водорода до более стабильных соединений, или, попадая на участки носителя, инициируют топографическую цепную реакцию деструктивной поликонденсации с образованием кокса. Поэтому на диаграмме ДТА отсутствует экзотермический пик при 200 С, хв актерный для горения кокса на платине, наблюдается слабый пик при 380 С, обусловленный горением коксогенов на металлических центрах рения или иридия, и самый значительный пик при 500 С, характерный для горения кокса на носителе. [c.154]

    Элементарные С1адии ряда приведенных реакций предопределяются бифункциональным характером катализаторов риформинга. С одной стороны, они содержат один металл (платину) или несколько металлов (например, платину и рений, или платину и иридий), которые катализируют реакции гидрирования и дегидрирования. С другой стороны, носителем служит промотированный галогенами оксид алюминия, обладающий кислыми свойствами и катализирующий реакции, свойственные катализаторам кислотного типа. Поэтому разные элементарные стадии реакции могут протекать на различных участках поверхности катализатора металлических или кислотных. [c.7]

    Процесс производства катализаторов риформинга многостадиен. Он включает приготовление носителя — оксида алюминия. Далее следует нанесение платины и других активных компонентов. После этого осуществляют сушку и прокаливание катализатора. Если это требуется, то прокаливание завершают газофазным хлорированием. Затем проводят восстановление катализатора. Ряд модификаций катализатора риформинга (например, содержащие рений и иридий) подЬергают осернению. Восстановление и осернение катализаторов обычно осуществляют на установках каталитического риформинга. [c.75]

    Адсорбция из раствора [157, 158]. Катализаторы сорбционного типа готовят пропиткой гранул оксида алюминия, предварительно насыщенных или пе насыщенных растворителем. Для нанесения латипы, иридия и рения обычно используют растворы соответству-. щих кислот Н.,Р1С в, Н.ЛгС , HRe04. Закрепление платины па носителе осуществляют путем ионного обмена  [c.76]

    По данным [1821, температура восстановления катализатора Pt/-y-AI.,0,T зависит от температуры его прокаливания. Так, максимальная скорость восстановления (пик на термограмме ТПВ) наблюдается при 150 С, если катализатор прокален при 300 X или при более низких температурах. Однако температура восстановления повышается до 275 "С в случае, когда прокаливание проводят при. 500 550 "С. Аналогичный эффект температуры прокаливания наблюдается н для катализатора Re/y-Al Oa. С повышением температуры прокаливания от 300 до 500—550 °С температура максимальной скорости восстановления возрастает от 350 до 550 °С. Подобный результат можно объяснить тем, что высокие температуры прокаливания Способствуют более полному взаимодействию металлических оксидов с носителем —Al Og. Исходя нз количества водорода, поглощенного при восста ювленни, степень окисления платины и рения прокаленных катализаторах соответственно равна 4 +. 1 7+ (табл. 2.6). Платина н рений восстанавливаются до металли- ческого состояния. [c.82]

    Влияние рения на стабильность платинового катализатора риформинга было изучено при давлении, близком к атмосферному, в двух модельных реакциях дегидрирования циклогексана и дегидроизомеризации метилциклопентана [231 1. Первая из этих реакций характеризует активность металлической фазы, поскольку реакция идет на металлических центрах катализатора. Вторая реакция протекает по бифункциональному механизму, но лимитирующей является стддия (изомеризация метилциклопентена в циклогексен), которая проходит на кислотных центрах носителя. Следовательно, [c.102]

    Выбор катализатора риформинга определяется механизмом реакций, протекающих на нем. Реакции гидрирования и дегидрирования протекают по окислительно-восстановительному механизму и катализируются металлами, реакции изомеризации и гидрокрекинга протекают по ионному механизму и катализируются кислотами. Поэтому, в каталитическом крекинге используются бифункциональные катализаторы состава Ме -Ь -ЬА120з , где Ме = молибден, платина, рений, А12О3 — катализатор изомеризации, промотируемый фторидами или хлоридами металлов, являющийся одновременно носителем. [c.144]

    Первые биметаллические катализаторы были приготовлены осаждением платины и рения на хлорированную окись алюминия. На их базе возникло много новых процессов, в том числе ренифор-минг. Биметаллические катализаторы более устойчивы и позволяют работать при сниженных давлениях и повышенных температурах, увеличивают продолжительность циклов без опасности закоксовывания. Другой их характерной особенностью является возможность варьировать в более широких пределах соотношение отдельных реакций, слагающих процесс платформинга. Особенный интерес представляет увеличение скорости ароматизации парафинов при понижении скоростей гидрокрекинга. Заслуживает также внимания, что металлы — промоторы помимо взаимодействия с основным активным компонентом катализатора (большей частью платиной) влияют на селективность процесса, взаимодействуя с носителем (табл. 20). [c.146]

    Процесс сольватации (IV.32) приводит к образованию химического соединения, формой существования которого является жидкая фаза — раствор. Раствор электролита — носитель всех его свойств Как единой системы. Однако для рещения конкретных задач эту систему рассматривают по подсистемам — растворенное вещество и растворитель. В этом случае особое внимание обра-,щают на влияние природы растворителя на свойства растворенного вещества и хар актеристики протекающих в нем процессов, а также изменения свойстй растворителя под действием раство ренного вещества. [c.242]

    Стабилизирующее действие рения проявляется в том, что он катализирует реакцию гидрирования ненасыщенных соединений, являющихся источником коксообразования на платине. Рений, препятствуя закокосвыванию платины, способствует поддержанию высокой скорости спилловера водорода к м тгллу. При этом гидрирование соединений, образующих кокс, протекает наиболее интенсивно на участках носителя, примыкающих к биметаллическим кластерам платины и рения. В связи с этим отложение кокса происходит, главным образом, на участках носителя, наиболее удаленных от биметаллических кластеров, при этом концентрация водорода на указанных участках существенно ниже. Платинорениевый катализатор может эксплуатироваться в процессе без регенерации с накоплением в нем кокса до 20% [63]. [c.35]

    Механизм стабилизирующего действия олова на катализатор отличается от действия рения, олово отравляет центры прочной адсорбции на платине, что предотвращает ее закоксовывание [73]. Олово и германий, предотвращая блокирование платины коксом, способствуют поддержанию высокой скорости спилловера водорода, при этом гидрирование поверхностных ненасыщенных соединений, склонных к образованию кокса на носителе, будет протекать с наибольшей интенсивностью вблизи кластеров, включающих платину и олово (или германий). Таким образом, повышение стабильности платиновых катализаторов риформинга при промотировании оловом и германием [c.38]

    Катализаторы, отличающиеся содержанием платины, рения (СВ-8, СВ-5В, СВ-11), приготовленные на основе специального носителя - у-окиси алюминия, были разработаны Китайским институтом FRJPP [8]. Указанный носитель характеризуется оптимальной пористой структурой, низким содержанием примесей, высокой прочностью и термостабильностью, что позволяет уменьшить спекание платины на поверхности носителя во время эксплуатации и регенерации, увеличить степень удерживания хлора [106-108]. [c.48]

    Еще в начале нашего века Сабатье и Сандеран нашли, что бензол легко гидрируется в циклогексан в присутствии мелкораздроб-леняого никеля. Позже было показано, что для этой же цели можно с успехом применить скелетный никель, никель на носителях и смешанные никелевые контакты [6]. Хорошие результаты дает применение мелкораздробленной платины Можно использовать также палладий, молибден, вольфрам, рений и их соединения [6, 15]. [c.19]

    Типы месторождений реиийсодержащих руд. Среднее содержание рения в земной коре оценивается в 7-10 %. В 1960 г. в медно-свинцовых рудах Джезказганского месторождения был обнаружен в виде субмикроскопических выделений собственный рениевый минерал, названный джезказганитом. Состав его, по-видимому, отвечает формуле u(Re, Mo)S4 [77]. До этого открытия единственным известным минералом, содержащим сколько-нибудь существенные количества рения, был молибденит MoS 2. Благодаря близости химических свойств, атомных и ионных (Ме ) радиусов рений генетически связан с молибденом и изоморфно входит в кристаллическую решетку молибденита. Содержание его в молибденитах колеблется в широких пределах, начиная от десятитысячных долей процента и достигая в некоторых случаях десятых долей. Особенно богаты рением молибдениты из медно-молибденовых месторождений разных типов. Все остальные минералы содержат рений в гораздо меньших концентрациях. Среднее содержание рення в пирите и халькопирите, являющихся после молибденита его основными минералами-носителями, соответственно 3-10 и 6-10" %, максимальное 2 10 % [77]. [c.293]

    После экстракции белков из муки смесью УМЦ Хюбнер и Уолл [99] фракционировали невосстановленные глютенины гель-фильтрацией на сефарозе 4В и сефарозе 2В в среде 5,5М гуанидинхлорида модифицированным методом Мередита и Рена [135]. Глютенины разделялись в этих условиях на две большие группы, вероятно, весьма существенно различающиеся размерами молекул, поскольку одна из них исключена из обоих типов геля (приблизительная граница исключения носителя сефароза 2В составляет 20 млн.). [c.199]

    Используемые для промотирования металлы можно разделить на две фуппы. К первой из них принадлежат металлы VIII ряда рений и иридий, известные как катализаторы гидро-дегидрогенизации и гидрогенолиза. К другой группе модификаторов относятся металлы, практически неактивные в реакциях риформинга, такие, как германий, олово и свинец (IV группа), галлий, индий и редкоземельные элементы (III группа) и кадмий (из II группы). К биметаллическим катализаторам относятся платино-рениевые и платино-иридиевые, содержащие 0,3 - 0,4 % масс, платины и примерно столько же Ке и 1г. Рений или иридий образуют с платиной биметаллический сплав, точнее кластер, типа Р1-Ке-Ке-Р1-, который препятствует рекристаллизации - укрупнению кристаллов платины при длительной эксплуатации процесса. Биметаллические кластерные кристаллизаторы (получаемые обычно нанесением металлов, обладающих каталитической активностью, особенно благородных, на носитель с высокоразвитой поверхностью) характеризуются, кроме высокой термостойкости, еще одним важным достоинством - повышенной активностью [c.535]

    В каталитическом риформинге применяют гетерогенные бифункциональные катализаторы. Эти катализаторы содержат металлы (платину, платину и рений, платину и иридий), которые катализируют реакции дегидрирования и гидрирования. Носителем катализаторов служит промотированный галогенами оксид алюминия, обладающий кислотными свойствами и катализирующий реакции изомеризации и крекинга углеводородов. На катализаторах риформинга протекают также реакции дегидроциклизации парафиновых углеводородов. В отечественной промышленности используют алюмоплатиновые катализаторы АП-56 и АП-64, которые содержат соответственно 0,65% и 0,64% платины, нанесенной на у-А120з. [c.385]


Смотреть страницы где упоминается термин Рений на носителях: [c.39]    [c.182]    [c.94]    [c.266]    [c.104]    [c.320]    [c.108]    [c.109]    [c.148]    [c.340]    [c.64]    [c.70]    [c.167]    [c.170]   
Гетерогенный катализ в органической химии (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Реней

Рений

Рениты

Ренне

Реньо



© 2025 chem21.info Реклама на сайте