Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Амиды возможные методы анализа

    Для установления вторичной и третичной структур химические методы неприменимы. Для этой цели преимущественно применяют рентгеноструктурный анализ, причем из получаемой дифракционной картины рассчитывают распределение электронных плотностей в кристалле белка. Точное установление пространственных структур белков стало возможным благодаря работам Полинга и Кори. На аминокислотах, их амидах и простых пептидах в основном с помощью рентгенографических исследований были определены длины связей и валентные углы. Оказалось, что пептидная связь в значительной степени обладает характером двойной связи. Она является планарной, поэтому в пептидной цепи на один аминокислотный остаток приходятся лишь два места поворота. Одним является поворот вокруг С —К-связи (угол >р), другим — вращение вокруг оси С —С-связи (угол ф). Значения риф для всех остатков аминокислот определяют пространственное расположение цепи. [c.375]


    Аналогичным образом реагируют алифатические и алициклические кетоны, а также амиды ацетоуксусной кислоты. Методом ПМР спектроскопии и рентгеноструктурного анализа было показано, что, как правило, из реакционной среды выделяется один из двух возможных диастереомеров. [c.93]

    Других веществ, которые практически не поглощают в области 250—260 нм и не реагируют с уксусным ангидридом. К таким соединениям относятся различные алифатические и алициклические кислоты, простые и сложные эфиры, углеводороды и, возможно, третичные амины. Амины, в принципе, должны катализировать гидролиз уксусного ангидрида, избавляя таким образом от необходимости добавлять серную кислоту. Однако спектральные характеристики исследуемой системы будут зависеть от природы анализируемого соединения. Поэтому при анализах образцов соединений, отличных от уксусной кислоты, для определения вклада уксусного ангидрида в общее значение поглощения раствора потребуется использовать метод компенсации. Возможно, что проведению анализов будут мешать соединения, обладающие системой сопряженных двойных связей, альдегиды, кетоны, спирты, тиолы, первичные и вторичные амины, а также амиды. [c.368]

    При описании отдельных методов указывается возможность ошибок, которые могут возникнуть из-за различных примесей. Сложные смеси иногда следует предварительно разделить дробной перегонкой на фракции или превратить мешающие определению вещества в индифферентные по отношению к реакции, применяемой для анализа. Например, определение первичных спиртов в присутствии третичных удается, если последние предварительно удалить дегидратацией третичные амины можно определять в присутствии первичных и вторичных, если их превратить в амиды. [c.6]

    Содержание ненасыщенных К. или их эфиров м. б. определено с помощью галогенирования (бромирова-ния) при этом следует, однако, учитывать возможность протекания реакции замещения. Для определения соединений с изолированной двойной связью (виниловых эфиров и др.) применяют бром-бромидный метод. Важное место при анализе галогенангидридов, ангидридов, эфиров, азидов и амидов занимает реакция с гидроксил-амином, приводящая к образованию гидроксамовых к-т. Последние образуют комплексы красного цвета с ионами трехвалентного железа. Количественное определение гидроксамовых к-т основано на измерении интенсивности поглощения света в области 530—540 нм для алифатических и 550—560 нм для ароматических [c.511]


    Сложность и многокомпонентность объектов исследования, отсутствие точных методов анализа, относительно незначительные количества азоторганических соединений в нефтях обусловила довольно медленные темпы развития исследований в этой области. Все эти трудности стало возможным преодолеть в связи с применением в нефтехимии современных физических и физико-химических методов анализа. Появляются целые серии работ советских. 13—8] и зарубежных авторов 19—11]. Эти интенсивные исследования принесли интересные сведения о природе азотистых соединений нефтей были обнаружены АОС пиридинового и хинолкно-вого ряда, производные анилина, акридина, индола, карбазола, а также циклические амиды кислот. Азотистые основания, составляющие обычно 50—20% от общего азота нефтей, оказались наиболее доступными для изучения. Имеющиеся литературные данные связаны в основном с этим классом соединений. [c.109]

    Хотя известно много методов анализа смесей аминов, нельзя рекомендовать какой-то один метод, нриедхлемый во всех случаях. Если в дифференцирующих растворителях сила оснований изменяется (гл. 6), то бинарные и тройные смеси аминов можно анализировать потенциометрическим титрованием [247, 401, 404, 579]. Ацетилированием в уксусной кислоте первичные и вторичные амины можно превратить в амиды кислот, которые не реагируют с хлорной кислотой [158, 311, 312, 314, 612, 750, 811, 854 , а первичные амины переводят действием салицилового альдегида [156, 432, 750], ацетилацетона [157] и 2-этилгексальдегида в имины (в последнем случае возможно непосредственное титрование с -этилкапроновым альдегидом [518[). В пиридине избыток салицилового альдегида можно определить обратным титрованием метилатом натрия вторичные и третичные амины, не реагирующие с салициловым альдегидом, можно оттитровать в хлороформе стандартным раствором кислоты [156, 432[. Первичные алифатические и ароматические амины можно перевести действием фталевого ангидрида в фталимиды, нейтральные в уксусной кислоте [262[. [c.341]

    Свойства, зависящие от факторов интенсивности немономерных форм, мало применялись при изучении полимеризации, возможно, по причине трудности анализа экспериментальных данных. Однако константы димеризации ряда карбоновых кислот [42, 44, 50] и амидов [31] были рассчитаны из измерений молекулярной поляризации (гл. 15, разд. 3) с помощью уравнений (16-44) и (16-45) аналогично были интерпретированы измерения проводимости (гл. 15, разд. 1) растворов коллоидных электролитов [47, 48]. Эти уравнения использовались также для расчета Рзо нитрометана из измерений поглощения в ультрафиолетовой области (гл. 13, разд. 1) [43] и для расчета Рго тио-лов из измерений поглощения связи 5—Н в инфракрасной области (гл. 13, разд. 2) [59а]. Интенсивности рамановской линии, ]pинaдлeжaщeй Вг (гл. 13, разд. 3), были использованы для расчета Рго уксусной кислоты [64]. Полимеризация соединений, содержащих гидроксильные группы, изучалась также методом протонного магнитного резонанса (измерением химического сдвига) (гл. 13, разд. 4,Б). Если между различными формами происходит быстрый химический обмен, то наблюдаемый хими- [c.406]

    При определении количественного и качественного состава кислородсодержащих соединений широко применяется инфракрасная спектроскопия благодаря наличию характеристических полос кислородных функциональных групп 3400—3600 см — валентные колебания атомов водорода гидроксильных групп кислот и фенолов, 1650—1740 см —валентные колебания карбонильной группы кислот, кетонов, сложных эфиров (лактонов), ангидридов кислот, амидов. Показано [49], что с помощью специфических химических реакций возможно провести идентификацию полос поглощения карбонильных групп различных классов соединений. Так, обработка карбоновых кислот бикарбонатом натрия приводит к образованию карбоксилатанионов, для которых характерно поглощение в области 1580—1610 см . Дальнейшая обработка образца гидроксидом натрия при нагревании вызывает омыление сложных эфиров, лактонов, ангидридов и образование карбоксилатанионов. В результате в области 1650— 1740 СМ наблюдается только поглощение кетонов. Пользуясь групповыми интегральными коэффициентами поглощения (для карбоновых кислот 1,24-10 л/(моль-см), сложных эфиров 1,15 10 кетонов 0,72-10 л/(моль-см) [50], можно определить концентрацию соединений каждого типа. Применение методов ИК-спектроскопии в исследованиях состава нефтей 51] позволило обнаружить и количественно оценить наличие карбоновых кислот, фенолов, амидов, 2-хинолонов. Отмечено, что точность анализа значительно снижается вследствие межмолекулярной ассоциации компонентов, что приводит к уменьшению интенсивности поглощения групп и занижению результатов. Повышение точности достигается разбавлением растворов и использованием в качестве растворителей тетрагидрофурана или дихлорметана. Однако более значительные ошибки возникают из-за неверной оценки молекулярных масс определяемых соединений и наличия в молекуле более одного гетероатома. Исправление этого положения возможно препаративным выделением одного класса соединений и установления коэффициента поглощения данной функциональной группы. [c.50]


    В нескольких работах для анализа полиэфиров был использован метод аминолиза [1660—1662, 1664, 1665], состоящий в расщеплении эфирных групп смолы под действием аммиака или аминов. Этот метод дает возможность выделить и количественно определить содержащиеся в смоле высшие спирты, моно- и дикарбоновые кислоты в форме амидов или их производных (по реакции Ri OOR 2 + XNH = Ri ONHX + R2OH). [c.111]

    Образование сульфита при щелочном плавлении характерно для соединений, содержащих окисленную, т. е. четырех- и шестивалентную серу. Эти соединения можно отличать по их различной растворимости в сочетании с результатами щелочного плавления. Например, сульфокислоты и их щелочные соли растворимы Б воде, в то время как сульфонамиды нерастворимы в воде и в кислотах. Как видно из уравнений (2) и (3), сульфонамиды отличаются от сульфонов только тем, что дают при щелочном плавлении аммиак или амины. Следует отметить, что в этом отношении при щелочном плавлении амиды карбоновых кислот ведут себя аналогично сульфонамидам. Сульфиновые кислоты можно обнаружить по их способности осаждаться из растворов в. минеральных кислотах при добавлении хлорида железа (HI). Хотя эта реакция не очень чувствительна, ее можно использовать для отличия сульфиновых кислот от сульфокислот Для обнаружения сульфита, образующегося при щелочном плавлении органических соединений, содержащих четырех- и шестивалентную серу, можно использовать все методы, приведенные в книге Файгля по неорганическому капельному анализу для обнаружения двуокиси серы, выделяемой кислотами из сульфитов щелочных металлов. Особенно пригодна реакция образования черного оксигидрата никеля (IV) из зеленой гидроокиси никеля (II) при взаимодействии с двуокисью серы . При этом происходит самоокисление двуокиси серы, способствующее в свою очередь окислению Ni(OH)2 в NiO(OH).2 , которое обычно протекает только под действием окислителей. Возможно, что при действии двуокиси серы на Ni(OH).2 вначале образуется основной сульфит, в котором катионный и анионный компоненты далее окисляются кислородом воздуха по схеме  [c.335]

    Прямой спектрофотометрический анализ 2,4-Д и 2,4,5-Т предложен Гордоном и Берозой (Gordon, Beroza, 1952). Исследуемый образец кипятят в течение часа со щелочью, экстрагируют эфиром, экстракт очищают, в том числе на хроматографической колонке. На выходе колонки собирают две фракции, содержащие разделенные 2,4-Д и 2,4,5-Т. 2,4-Д определяют по его спектру поглощения в ультрафиолетовой области с максимумом 284 ммк, 2,4,5-Т — соответственно 289 ммк. Все производные, т. е. эфиры, амиды и соли этих кислот, возможно присутствующие в образце как метаболиты, в процессе анализа превращаются в кислоты и определяются вместе с ними. Метод разработан для определения О—180 мкг пестицидов. [c.110]

    Для повышения чувствительности и улучшения воспроизводимости определений большое значение имеют правильно подобранный источник возбуждения спектра и условия анализа. Особенно ценны те методы, в которых сочетаются высокая чувствительность и хорошая воспроизводимость с возможностью одновременного определения большого числа примесей. К числу таких способов следует отнести химико-спектральное определение микропримесеЙ элементов группы сероводорода и сернистого аммония в солях щелочных и щелочноземельных металлов с применением смешанного коллектора из сернистого кадмия, угольного порошка и диэтилдитиокарбамата натрия, на котором выделяются примеси из раствора соли, обрабатываемого сероводородом (или тиоацет-амидом) . На смешанном коллекторе можно концентрировать большое число примесей благодаря возможности использования разнообразных механизмов их выделения. [c.11]

    Применение динитрофенильных производных, введенных в практику Зангером [25] с целью идентификации и количественного определения концевых аминогрупп, позволяет получить ценные сведения о количестве открытых цепей в белке. Кроме того, такие меченые аминокислоты служат в качестве реперных точек при исследовании неполного гидролиза (1346). В этом отношении полезными являются также е -аминогруппы лизина. Путем неполного гидролиза, осуществляемого с помощью кислоты и различных типов ферментов, оказалось возможным разрывать длинные полипептидные цепи в различных точках и путем анализа установить единственно возможную конфигурацию. Этим способом Зангер и Таппи[99]и Зангер и Томпсон [100] определили порядок чередования аминокислот в двух типах цепей, входящих в состав инсулина (табл. 27). Такой подход к проблеме структуры белка был облегчен широким применением новейших микрометодов хроматографии на бумаге и силикагеле и ионофореза. Таким образом, оказывается, что одна из крупнейших проблем химии белка поддается изучению с помощью весьма простых и экономичных методов. Цепи в инсулине имеют различную длину, причем цепь с N-концевым фенилаланином (цепь В) состоит из 30 остатков, а соответствующая глициновая цепь (цепь А) — из 21 остатка. Порядок чередования аминокислот и их содержание даны в табл. 27. Можно отметить следующее. Цепь А не содержит лизина, гистидина, аргинина, треонина, фенилаланина и пролина все эти компоненты входят в состав цепи В, в которой, в свою очередь, совсем нет изолейцина. Не наблюдается ни регулярного чередования аминокислот, ни тенденции к чередованию полярных и неполярных групп. Три ароматические аминокислоты (фен.фен.тир.) расположены последовательно, и два остатка глутаминовой кислоты связаны с двумя остатками ци-стеина (глу.глу.цис.цис.). В обеих цепях содержится шесть цистеиновых остатков, четыре из которых расположены врозь, а только что упомянутые два — рядом друг с другом в молекуле нативного белка все они существуют в форме цистина, но какие из них расположены между пептидными цепями, а какие в самих пептидных цепях — неизвестно. Часть дикарбоновых кислот присутствует в виде амидов — четыре в цепи А и две в цепи В. [c.255]


Смотреть страницы где упоминается термин Амиды возможные методы анализа: [c.70]    [c.287]    [c.90]    [c.439]    [c.36]    [c.36]    [c.162]    [c.279]   
Акваметрия (1952) -- [ c.394 ]




ПОИСК





Смотрите так же термины и статьи:

Амиды методом



© 2025 chem21.info Реклама на сайте