Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соединения присоединения связь

    Бензольные ядра ароматических углеводородов устойчивы и расщепляются при 450—500° в весьма небольшой степени. Напротив, молекулы ароматических углеводородов с боковыми парафиновыми цепочками крекируются легко. У таких соединений разрыв связи происходит главным образом в месте присоединения боковой цепи к бензольному кольцу (фиг. За). [c.19]

    С другой стороны, при помощи озона много узнали о структуре природного и синтетического каучуков, так как он атакует двойную связь, а образовавшиеся озониды могут гидролизоваться с образованием альдегидов или кетонов в зависимости от групп, присоединенных к атомам углерода, соединенным двойной связью. [c.216]


    СЕМИПОЛЯРНАЯ СВЯЗЬ (координационная, донорно-акцепторная связь) — тип химической связи, образование которой можно представить как присоединение к свободной электронной паре атома (донора) другого атома или группы атомов (акцептора), имеющего секстет валентных электронов. С. с. встречается чаш,е всего в комплексных и органических соединениях. Типичным примером С. с. в органических соединениях является связь N—О [c.222]

    Если связующая пара электронов окажется на равном расстоянии от обоих ядер, ковалентная связь считается неполярной. При смещении электронной пары в сторону атома, более склонного к их присоединению (более электроотрицательного), связь становится полярной, и если это смещение выражено весьма резко, связь считается ионной. Примеры строго неполярных связей (С—С, Н — Н, С1—С1), полярных (С —С1, Н—С1, Н —Вг), ионных (Ыа—С1, К — Вг) показывают, что чем больше различие в природе соединяющихся атомов, тем более их связь является полярной и, наконец, ионной. Однако целиком ионных связей нет, так как атом, отдавая электрон, получает способность притягивать его обратно и, следовательно, отрицательный заряд в молекуле не строго локализован около другого, более электроотрицательного атома. Это ограничение ионного характера связи имеет существенное значение для оценки различных свойств соединений. Огромному большинству соединений свойственны связи различной степени полярности — слабополярные (8 — С1, С — О), более полярные Н — С1, Н — Р. Ионные связи встречаются сравнительно редко (в галидах и оксидах щелочных и щелочноземельных металлов), но и в этих случаях с вышеуказанным ограничением. В молекулах, составленных из одинаковых атомов На, Ог, За ИТ. П., связи неполярные. [c.67]

    Химические свойства углеводородов, не имеющих кратных (двойной или тройной) связей, в общем приблизительно повторяют свойства метана. Введение в молекулу кратной связи обычно сообщает ей склонность к реакциям присоединения. Это отмечают, говоря о ненасыщенном (непредельном) характере вещества, содержащего в своем составе кратные связи. Например, простейшие непредельные углеводороды—этилен (Н2С=СНг) и ацетилен (Н—С С—Н) — легко присоединяют галоиды. Реакция присоединения связана с переходом кратных связей между атомами углерода в простые. Сравнительная легкость такого перехода и обусловливает ненасыщенный характер соединений. в-з4 [c.538]

    Присоединение водорода (реакция гидрирования). При действии на этиленовые углеводороды водорода в присутствии катализаторов (N1, Pt) атомы водорода легко присоединяются к углеродным атомам, соединенным двойной связью, которая при этом разрывается и на ее месте сохраняется простая связь, [c.69]


    При разработке кинетических моделей пиролиза углеводородов имеют место принципиальные ограничения и необходимые допущения. Так, в реакциях замещения чаще всего образуется несколько изомерных радикалов. Их количественное соотношение зависит от прочности С—Н-связи в исходном углеводороде и вероятности изомеризации. Это позволяет рассчитать состав первичных продуктов, полагая, что из углеводорода образовался только один радикал, который распадается по различным маршрутам. В реакциях присоединения радикалов к олефинам получаются те же радикалы, что и в реакциях замещения алканов, но уже не все изомеры, а только два — со свободной валентностью при атомах углерода, соединенных двойной связью. Необходимость включения реакций изомеризации этих радикалов может быть установлена только путем сравнения разных вариантов расчета со специально проведенными экспериментами. [c.40]

    Предпринималось много попыток добиться превращения литийорганических соединений в соединения со связями углерод - азот вместо связей углерод - литий в частности, велись поиски удобного синтеза аминов. Большая часть реакций, о которых сообщалось, включала удаление от азота хорошей уходящей группы либо присоединение к кратной связи азот -азот (см. Основную литературу, Г (II)). Некоторые варианты приведены ниже  [c.124]

    По радикально-цепному неразветвленному механизму протекают реакции замещения галогенами (Fj, lj, Brg) атома водорода при насыщенном атоме углерода, крекинг и пиролиз органических соединений, присоединение галогенов, галогенводородов, спиртов и тиолов к ненасыщенной С=С-связи, а также олигомеризация, полимеризация и теломеризация винильных мономеров. [c.235]

    Эти соединения характеризуются тем, что по крайней мере одна из входящих в состав молекулы групп имеет высокий энергетический потенциал. При переносе этой группы происходит разрыв связи, соединяющей ее с молекулой, что приводит к резкому уменьщению свободной энергии, заключенной в молекуле химического соединения. Такие связи называются высокоэнергетическими, или макроэргическими. Присоединение группы с высоким энергетическим потенциалом к молекуле-акцептору повыщает уровень ее свободной энергии, переводя таким образом молекулу в активированную форму, в которой это соединение может участвовать в биосинтетических реакциях. [c.98]

    Теория, объясняющая эту особенность соединений с сопряженными двойными связями, была развита Тиле (1899). В наши дни она во многом устарела, однако в свое время сыграла важную роль в химии диенов. Согласно этой теории, у каждого из атомов углерода, соединенных двойной связью, остается способность к присоединению, так называемая остаточная, или парциальная, валентность. Она условно обозначается пунктиром  [c.192]

    Полиприсоединение (см. 42.1)—особый тип реакции присоединения, осуществляемой без расщепления кратных связей углерод — углерод, В этом случае реагируют две различные функциональные группы, которые находятся или в одинаковых, или в двух различных молекулах, без отщепления низкомолекулярных. соединений, Присоединение происходит по связи = N или С=0. [c.446]

    Бензольные кольца гидрируются значительно труднее, чем непредельные алифатические соединения. Присоединение водорода к любой двойной связи экзотермично, гидрирование же бензола в 1,2-дигидробензол эндотермично. Х алее дигидробензол с сопряженными двойными связями гидрир уется легко и экзотермически  [c.292]

    Более важным является способ, который недавно был технически разработан в нефтяной промышленности (Гролл и Хэрне). По этому способу исходным веществом. аля получения глицерина является пропилен газов крекинга. При обработке его хлором происходит обычное присоединение по двойной связи. Одиако при высоких те.чперату-рах хлорирование можно провести таким образом, чтобы в1 есто присоединения (дихлор-пропан при 400—500° уже неустойчив) произошло замещение и именно при углеродном атоме, соединенном простой связью при этом получается хлористый аллил, который затем известным способом через оба хлоргидрина (по Леннарту Смиту образуется около 70% и около 30% а,а -дихлоргидрина) может быть превращен в глицерин  [c.400]

    Влияние полярности заместителей и сопряжения двойных связей наряду со стсрическим эффектом способствует образованию полимерных молекул с относительно однородным сочетанием отдельных звеньев, го есть макромолекул более или менее одинакового строения. При полимеризации винильных соединений присоединение несимметрично построенной молекулы мономера к макрорадикалу может происходить по двум направлениям  [c.113]

    Реакции 11-24—11-28 представляют собой введение группы СН22, где 2 — галоген, гидрокси-, амино- или алкилтиогруппа. Все это реакции Фриделя — Крафтса с участием альдегидов и кетонов, а по отношению к карбонильному соединению — присоединение по двойной связи С = 0. Они идут по механизму, который будет обсужден в т. 3, гл. 16. [c.366]


    Согласно Марковникову, атом хлора из состава НС1 присоединяется к менее гидрогенизированиому атому углерода, а атом водорода — к более гидрогенизированиому атому углерода по месту двойной связи. Такой порядок присоединения связан с поляризацией (смещением) электронных облаков it-связи. Эта связь более рыхлая, чем <з-связь, потому легче деформируется под влиянием радикала Hs, обладающего положительным индукционным эффектом. Вследствие этого на атомах углерода, соединенных двойными связями, возникают небольшие эффективные заряды, противоположные по знаку, которые и обусловливают механизм присоединения к ним галогеноводородов  [c.374]

    В связи с присутствием альдегидной группы для аль-дегидокислот характерны реакции, свойственные альдегидам образование серебряного зеркала с аммиачным раствором окиси серебра, образование бисульфитных соединений, присоединение синильной кислоты и др. В то же время альдегидокислоты обладают всеми свойствами, характерными для кислот. [c.211]

    Химические свойства предельных углеводородов. Предельные углеводороды отличаются химической инертностью, т. е. при обычной температуре не окисляются и не реагируют с концентрированной серной кислотой и рядом других энергичных реагентов. Этим объясняется их название—парафины (parum affinis), что в переводе на русский язык означает мало сродства . В результате более подробных исследований установлено, что предельные углеводороды инертны только по отношению к основаниям, минеральным кислотам средней силы п окислителям в водном растворе. К реакциям присоединения парафины неспособны, так как в этих соединениях все связи атома углерода насыщены. Однако они легко вступают в реакции замещения при взаимодействии с хлором и бромом, образуя соответствующие галоидпроизводные. Эти реакции происходят на рассеянном солнечном свету даже при обыкновенной температуре. [c.54]

    Теория, объясняющая эту особенность соединепиГ с сопряженными двойными связями, бьпа развита в 189Э г. немецким ученым Тиле. Согласно этой теории, у каж юго из агомов углерода, соединенных двойной связью, остается способность к присоединению, так как при образовании кратной связи сродство атомов углерода не используется полностью, а сохраняется остаточная, [c.96]

    В кислой среде и при мольном соотношении формальдегида и фенола (0,70—0,85) 1 присоединения к фенольному ядру второй молекулы формальдегида обычно не происходит, поэтому образующийся новолачиый олигомер имеет в основном линейное строение. Его молекулярная масса обычно не превышает 2000, т. е. в состав макромолекулы новолака входит не более 20 фенольных ядер, соединенных метиленовыми связями. [c.65]

    Гидроборирование. Присоединение диборана к я-связи с образованием оргапобо-рана (т. е. соединения, содержащего связь углерод — бор). [c.344]

    Анализ обнаруженных в гидролизате метилпроизводных сахаров указывает на наличие некоторой разветвленности молекул галактоглюкоманнана. Исследования его структуры методом частичного гидролиза и метилирования показали, что макромолекулы галактоглюкоманнана построены из 1- 4 соединенных остатков P-D-маннопираноз и p-D-глюкопираноз. Каждый двадцатый остаток гексозы главной цепи в среднем имеет присоединенный связями 1- 6 остаток D-галактопиранозы, возможно, в а-конфигурации. Ниже схематически представлена структура звена этого галактоглюкоманнана  [c.239]

    В древесине лиственных пород ксиланы являются преобладающими полисахаридами гемицеллюлоз. Для лиственных деревьев характерно присутствие глюкуроноксилана. Это разветвленный полисахарид, главная цепь которого построена из остатков P-D-ксилопиранозы, соединенных гликозидными связями 1 ->4. Боковыми ответвлениями служат остатки 4-0-метил-0-глюкуроновой или D-глюкуроновой кислот, присоединенные к главной цепи а-гликозидными связями ]—>2. Структурная и символическая формулы глюкуроноксилана представлены на схеме 11.8. Формулы моносахаридов, образующих составные звенья, приведены выше (см. схему 11.1). Глюкуроноксиланы лиственных пород содержат в среднем одно звено глюкуроновой кислоты на 9... 10 звеньев ксилозы. Число боковых звеньев зависит от породы дерева, положения в стволе и возраста. Распределение боковых звеньев хаотическое. Высказывают предположение, что значительная доля (до 40%) групп уроновых кислот в глюк-уроноксиланах находится не в свободном виде карбоксилат-ионов, а участвует в образовании сложноэфирных связей (метилированы, связаны с лигнином). Иногда в глюкуроноксиланах в качестве боковых ответвлений присутствуют остатки p-D-ксилопиранозы. В состав глюкуроноксиланов лиственных пород входят ацетильные группы -СОСНз, массовая доля которых составляет 12... 19% (примерно одна группа на два звена ксилозы). Они распределены в О-ацетил-4-О-метилглюкуроноксиланах между гидроксильными фуппами звеньев главной цепи в следующем порядке  [c.303]

    Галактогпюкоманнаны - это разветвленные полисахариды, главные цепи которых построены из остатков Р-О-маннопиранозы и З-О-глюкопи-ранозы, соединенных гликозидными связями 1->4. В качестве боковых ответвлений присутствуют остатки а-О-галактопиранозы, присоединенные гликозидными связями 1 6. Возможно также наличие боковых звеньев Р-О-маннопиранозы. Боковые ответвления могут также присоединяться связями 1—>3. Структурная и символическая формулы галактоглюкоманнана представлены на схеме 11.11. [c.308]

    В настоящее время считают, что в большинстве случаев галактаны входят в комплекс пектиновых веществ (см. 11.9.2). Из-за трудностей выделения водорастворимых полисахаридов в чистом и неизмененном виде не всегда удается различить однородные и смешанные галактаны. По мере углубления исследований строения и состава галактанов прищли к мнению, что в древесине хвойных, а также, вероятно, и лиственных пород присутствуют скорее всего не гомогалактаны, а смешанные галактаны, в том числе кислые, содержащие звенья уроновых кислот. Из смешанных галактанов в древесных породах наиболее распространены разветвленные арабиногалактаны разного строения. Арабиногалактан характерен для древесины лиственницы разных видов. Арабиногалактан лиственницы -это смешанный сильно разветвленный полисахарид, главная цепь которого построена из звеньев р-О-галактопиранозы, соединенных гликозидными связями 1->3. К главной цепи присоединены боковые ответвления -остатки а- и Р-Ь-арабинофуранозы, присоединенные гликозидными связями 1->6. Соотношение звеньев галактозы и арабинозы в макромолекуле составляет примерно 6 1, но может колебаться (даже у одного и того же ботанического вида) в довольно широких пределах от 9,8 1 до 2,6 1. Степень разветвленности (число и длина боковых ответвлений) варьируется. [c.314]

    Однако при нагревании коричной, акриловой или кротоновой кислот с о-аминофенолом реакция принимает иное направление, в результате чего образуется семичленное кольцо. Строение продукта реакции (III) показано ниже (см. стр. 503). Отсюда можно сделать вывод, что в процессе образования семичленных соединений присоединение SH-группы к двойной связи происходит перед замыканием лактамного цикла, в то время как при образовании бензотиаморфолинов присоединению SH-группы подвойной связи предшествует ацилирование аминогруппы. Более того, присоединение SH-группы по двойной связи происходит в этих двух реакциях по-разному. [c.502]

    Методы получения изоксазолов (IV) и пиразолов (V) основаны на присоединении к соединениям с различной степенью окисления соединений, содержащих связи О—N или N—N. Так, большинство наиболее общих и широко используемых методов получения производных изоксазолов и пиразолов основано на присоединении гидроксиламина, гидразина или монозамещенного гидразина к [c.168]

    Настоящая работа состоит из теоретической и экспериментальной частей. В теоретической части впервые дана общая трактовка таких равновесных систем, в которых ион (или молекула) М находится в химическом равновесии с рядом соединений М.А, МАг,. .. образованных присоединением к М (центральной группе) одного или более лигандов А (молекул или ионов). Частные случаи таких систем рассматривали уже много раз, но общий случай еще не изучали. Цель такой общей трактовки заключается в том, чтобы показать, каким образом можно определить все константы равновесия и как положение равновесия в системе зависит от величины этих констант. Интересен также вопрос, как значения ступенчатых констант равновесия, особенно их соотнощение, зависят от строения и пространственной структуры индивидуальных соединений. Этому вопросу посвящены главы IV — Теоретические соображения, касающиеся соотнощений между ступенчатыми константами V — Величина остаточного эффекта и лиганд-эффекта в системах со ступенчатым комплексообразованием VI — Некоторые проблемы химии комплексных соединений в связи с новыми исследованиями образования амминов металлов и VII — О строении и пространственной структуре амминов металлов . [c.18]


Смотреть страницы где упоминается термин Соединения присоединения связь: [c.446]    [c.332]    [c.49]    [c.80]    [c.230]    [c.370]    [c.2227]    [c.241]    [c.278]    [c.307]    [c.271]    [c.170]    [c.313]    [c.288]    [c.201]    [c.133]    [c.328]   
Теплоты реакций и прочность связей (1964) -- [ c.155 ]




ПОИСК





Смотрите так же термины и статьи:

Ацетиленовые соединения, присоединение по двойной связи

Ацетиленовые соединения, присоединение по тройной связи Ацетил малоновая кислота, эфиры

Гетеролитическое (электрофильное) присоединение хлорсодержащих аддендов к непредельным соединениям с образованием новой С—С-связи Катионная теломеризация

Глава IV. Гемолитическое присоединение хлорсодержащих аддендов к I непредельным соединениям с образованием новой С—С-связи

Кадмийорганические соединения, растворы присоединение к двойной связи в сопряженных системах

Литийорганические соединения в анионной полимеризации присоединение по двойной связ

Малеиновый ангидрид присоединение к соединениям с конъюгированными двойными связям

Направление присоединения к двойной связи при полимеризации винильных соединений

Нуклеофильная сольватация металлорганических соединений. Реактив Электрофильное присоединение к кратной связи между атома- ми углерода

Нуклеофильное присоединение к непредельным соединениям с активированными кратными связями

Присоединение водорода к углерод-углеродным кратным связям (в непредельных, ароматических и гетероциклических соединениях) и к насыщенным циклам (реакции гидрирования)

Присоединение воды к непредельным соединениям с ацетиленовыми связями

Присоединение галогенидов сурьмы к соединениям, содержащим тройную связь

Присоединение диалкил(арил)стибинов к соединениям, содержащим тройную связь

Присоединение к изоиндолам соединений с двойной связью

Присоединение к соединениям с сопряженными двойными углерод-углеродными связями

Присоединение литийорганических соединений по двойной связи СС

Присоединение нитроалканов к соединениям с активированной двойной связью (реакция Михаэля)

Присоединение нитропарафинов к соединениям с активированными и двойными связями

Присоединение нуклеофильное к полярным двойным связям к винилогам карбонильных соединений

Присоединение оловоорганических соединений по кратным связям

Присоединение органических кислот к непредельным соединениям с ацетиленовыми связями

Присоединение ортоэфиров к другим соединениям с двойными связями

Присоединение свинцовоорганических соединений по кратным связям

Присоединение соединений серы по С—О-связи

Присоединение солей ртути к гетероциклическим соединениям, содержащим этиленовые связи в цикле или боковой цепи

Присоединение фосфинов к соединениям с кратной связью или циклом

Присоединение фтора к прочим соединениям с двойными и трой- j j ными связями

Присоединение фторорганических соединений без возникновения новой связ

Присоединение фторорганических соединений к двойной связи

Присоединения реакции ароматических углеводородов к соединениям с двойными связями

Синтез алюминийорганических соединений присоединением к ацетиленам соединений с А— Н- и А1—С-связями

Синтез германийорганических соединений присоединением различных германийорганических соединений и солей германия к кратным связям

Синтез калийорганических соединений путем присоединения калия по двойной углерод-углеродной связи

Синтез натрийорганических соединений лутем присоединения натрия по двойной углерод-углеродной или азометиновой связям

Синтез сурьмяноорганических соединений присоединением производных сурьмы к непредельным связям

Синтез хлорорганических соединений присоединением хлора по кратным связям

Таблица II. Присоединение неполных эфиров фосфористой, тиофосфористой, фосфинистой кислот и фосфорорганических соединений с активной метиленовой группой к соединениям с кратной связью или циклом

Тройные углерод-углеродные связи присоединение алифатических соединений

Фторорганические соединения Фтор, присоединение по двойной связ

Электрофильный водород. Присоединение минеральных кислот к соединениям с двойной связью



© 2024 chem21.info Реклама на сайте