Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серная кислота металлов и сплавов

    Графит — это единственный конструкционный неметаллический материал, обладающий высокой теплопроводностью при достаточно высокой инертности в большинстве агрессивных сред, термической стойкостью при резких перепадах температуры, низким омическим сопротивлением, а также хорошими механическими сво11ствами. Теплопроводность искусственного графита выше теплопроводности многих металлов и сплавов, в частности свипца и хромоннкелевых сталей, в 3—5 раз. По этой причине примепеиие графита особенно эффективно для изготовления из пего тенлообмепной аппаратуры, предназначенной для эксплуатации в условиях воздействия таких агрессивных сред, как серная кислота определенных концентраций, соляная и плавико- [c.449]


    Такая микробиологическая коррозия развивается обычно во влажных нейтральных грунтах, в которых при попадании в них железа могут развиваться так называем мые сульфатвосстанавливающие (сульфатредуцирую-щие) бактерии. Продукт жизнедеятельности этих бактерий— сероводород — сильнейший агрессор для черного металла, многих цветных сплавов. Чугун, например, превращается при этом в хрупкое тело, на стали образуются каверны. Продукты такой коррозии имеют черный цвет и пахнут сероводородом. Грунт около корродирующего-металла тоже становится черным. Так что по цвету и по запаху продуктов коррозии можно определять характер процесса (продуктом электрохимической коррозии является ржавчина — вещество коричневого цвета без запаха). Могут быть в почве и бактерии, окисляющие сульфиды до серной кислоты- тоже сильнейшего агрессора. [c.75]

    Все перечисленные сплавы системы Ре—N1 и Ре—N1—Со с небольшими добавками Си и Сг во влажной атмосфере обладают пониженной коррозионной стойкостью. Они также не стойки при температуре 20—25°С в азотной кислоте (всех концентраций), в соляной и сернистой кислотах. В 2—5%-ном растворе серной кислоты металлы корродируют со скоростью 0,15 мм/год, но с увеличением концентрации и температуры скорость коррозии возрастает. В 65%-ном растворе азотнокислого аммония скорость коррозии составляет <0,8 мм/год. [c.169]

    Водородная хрупкость. Особой разновидностью коррозионного растрескивания является водородная хрупкость, поражающая металлы и сплавы в средах, которые не содержат специфических ионов, вызывающих коррозионное растрескивание. Например, высокопрочные углеродистые или мартенситные коррозионностойкие стали в разбавленной серной кислоте могут растрескаться за несколько минут. Этот процесс ускоряется при катодной поляризации. Присутствие в кислотах соединений се- [c.453]

    Пассивным называется металл, являющийся активным в электрохимическом ряду напряжений, но тем не менее корродирующий с очень низкой скоростью. Пассивность — это свойство, лежащее в основе естественной коррозионной устойчивости многих конструкционных металлов, таких как алюминий, никель и нержавеющая сталь. Некоторые металлы и сплавы можно перевести в пассивное состояние, выдерживая их в пассивирующей среде (например, железо в хроматном или нитритном растворах) или с помощью анодной поляризации при достаточно высоких плотностях тока (например, железо в серной кислоте). [c.70]

    Переработка шламов производится по различным технологическим схемам, учитывающим специфику данного шлама. Обычно вначале шлам обжигают с целью окисления сульфидов. Огарок подвергают выщелачиванию в серной кислоте, при этом в раствор переходят никель, железо, частично медь. Твердый остаток от выщелачивания плавят с восстановителем в электропечах и полученный металлический сплав, содержащий в основном медь и платиноиды, отливают в аноды и подвергают электролизу в растворе серной кислоты. На катоде осаждается губчатая медь, содержащая некоторое количество платиноидов, основная же их масса выпадает в шлам. Губчатую медь растворяют в серной кислоте в присутствии кислорода. Платиновые металлы остаются в остатке от выщелачивания. Этот остаток и шлам электролиза представляют собой концентрат платиновых металлов, содержание которых достигает в нем 50%. Концентрат направляют на разделение и извлечение платиноидов на аффинажный завод. [c.91]


    При переработке медных болванок [21 в листы, проволоку, трубы и т. д. удаление окалины производится травлением разбавленной серной кислотой. Медные сплавы после механического придания формы обрабатываются разбавленными минеральными кислотами для получения гладкой поверхности. Для травления применяются серная, соляная, азотная кислоты или их смеси, при закатке (викелевке) — серная кислота, бисульфаты, смесь, содержащая соду, и др., при протраве (наведении блеска) — смеси кислот с поваренной солью, сернокислым цинком, бихроматами, сосновой сажей и другими добавками. В зависимости от сплава и скорости травления используются кислотные ванны с концентрацией от 5 до 30%, чаще 10% и при температуре от 18 до 70 (в основном теплые). Как и при травлении железа, раствор с течением времени накапливает соединения металлов и вследствие этого должен быть освежен . [c.152]

    Медь образует сплав с неизвестным металлом, который в соединениях проявляет степень окисления +2. Массовая доля меди в сплаве составляет 90,8%. При растворении образца сплава массой 70,5 г в концентрированной серной кислоте выделился оксид серы (IV) объемом 24,64 л (нормальные условия). Какой металл образует сплав с медью (Других газов при взаимодействии сплава с серной кислотой не образуется.) Ответ цинк. [c.276]

    Навеску металла растворяют в серной кислоте. Если сплав не растворяется, то растворение ведут в азотной кислоте и нитраты переводят в сульфаты путем выпаривания раствора с серной кислотой до выделения густых белых паров последней. [c.300]

    Сплав магния и алюминия массой 75 г растворили в серной кислоте, получив смесь сульфатов металлов массой 411 г. Какую массу магния надо сплавить с алюминием массой 540 г для получения такого сплава Ответ 960 г. [c.286]

    Ртуть может быть окислена концентрированными азотной и серной кислотами. Ртуть растворяет многие металлы, образуя сплавы, называемые амальгамами с некоторыми металлами ртуть образует химические (интерметаллические) соединения. [c.213]

    Коррозия может быть химической, т. е. развиваться вследствие непосредственного химического воздействия компонентов топлива на детали из наиболее активных металлов, например действие некоторых меркаптанов серы на медь, входящую в состав сплавов, кадмий или серебро, из которых выполнены покрытия некоторых деталей топливной аппаратуры [2—4]. Для применения сернистых топлив характерны также коррозионные износы цилиндро-поршневой группы двигателей и выпускной системы коррозионно-агрессивными продуктами сгорания. Агрессивные окислы серы могут непосредственно воздействовать на металлы выпускной системы при высокой температуре газовая коррозия), но значительно более опасна электрохимическая коррозия кислотами (серной кислотой), образующимися при конденсации паров воды в остывающем или непрогретом двигателе (при [c.179]

    Разработана также защита металла от коррозии наложением анодной поляризации. Этот метод применим лишь к металлам и сплавам, способным легко пассивироваться при смещении их потенциала в положительную сторону. Анодную защиту применяют, например, для предотвращения коррозии нержавеющих сталей в серной кислоте. [c.222]

    Электрохимическая коррозия представляет собой сложный многоступенчатый процесс с цепью химических реакций, характеризуемый анодным и катодным процессами, протекающими взаимосвязанно. Известно, что поверхность любого даже самого чистого металла гетерогенна из-за различной ориентации кристаллов и фаз, на ней всегда есть участки с различными электродными потенциалами, которые в растворе электролита будут представлять собой систему короткозамкнутых гальванических пар. Применяемые в производстве серной кислоты металлы термодинамически не стабильны и способны легко вступать во взаимодействие с раствором электролита. Коррозионная стойкость металлов и сплавов определяется образованием на их поверхности абсорбционных и фазовых слоев, тормозящих протекание анодного и катодного процессов. Эти металлы и сплавы на их основе получили название пассивирующихся. [c.326]

    П а л л а д и й — самый легкий из платиновых металлов, наиболее мягкий и ковкий. В химическом отношении он менее инертен, чем платина и другие платиновые металлы. При нагревании палладий окисляется кислородом Рё + %02 = Рс10. Он растворяется в азотной и горячей концентрированной серной кислотах. С царской водкой палладий реагирует более энергично, чем платина. Характерные особенности палладия — устойчивость в степени окисления +2, способность поглощать водород (до 800 объемов на 1 объем Рс1). При поглощении водорода объем металла заметно увеличивается, он становится более хрупким и ломким. Палладий широко используется как катализатор целого ряда химических реакций (его наносят на фарфор, асбест или другие носители). Сплавы палладия применяются в электротехнике, радиотехнике и автоматике как электроэмиссионные и другие материалы. Так, сплавы палладия с серебром идут для изготовления электрических контактов сплавы палладия с золотом, платиной и родием используются в термопарах и терморегуляторах. [c.299]


    В начале процесса формирования пластин поверхность решеток, состоящих из доэвтектоидного сплава свинца с сурьмой, начинает при анодной поляризации покрываться слоем сульфата свинца, который изолирует решетку от контакта с электролитом. На непокрытых частях поверхности плотность тока увеличивается, вследствие чего анодный потенциал возрастает до величины, достаточной для окисления свинца до РЬОг. Двуокись свинца хорошо проводит ток и потому, в дальнейшем, в качестве электрода начинает работать не поверхность металла, а стойкая в серной кислоте двуокись свинца. Во время последующих разрядов и зарядов, вследствие объемных изменений, происходящих при переходе РЬОг [c.487]

    На металлах, растворяющих водород, наблюдается наименьшее значение перенапряжения водорода Из данных, приведенных в табл. И, видно, что при выделении ислорода на платиновых металлах перенапряжение имеет наиболее высокие значения и наиболее низкие на металлах железной группы. Выделение кислорюда возможно тюлько на пассивных электродах, не растворяющихся в данных условиях при анодной поляризации (платиновые металлы и золото в кислотах, растворах солей и щелочей). В щелочах и карбонатах стоек никель и менее устойчиво железо. В растворах сульфатов и серной кислоты, а также в хроматах устойчив свинец и его сплавы, содержащие до 12 /о сурьмы. Графитовые аноды стойки в конденсированных хлоридах. Весьма стойки аноды из плавленой магнитной закись-окиси железа— магнетита. [c.38]

    Степень допускаемого обеднения электролита по ионам кадмия и обогащения его по серной кислоте зависит от содержания в растворе ионов цинка, меди и других примесей. При слишком сильном обеднении электролита по ионам кадмия и высоком содержании цинка (до 80 г/л) потенциал разряда ионов кадмия приближается к потенциалу разряда цинка и на катоде начинает выделяться также и цинк. При нормальных условиях выход кадмия по току высок и достигает 85—90% несмотря на низкие плотности тока (30—200 А/м ). Это связано с высоким перенапряжением водорода на кадмии. Благодаря применению нерастворимых анодов из сплава свинца с 1 % серебра напряжение на кадмиевых ваннах достигает 2,5—3,0 В, а расход энергии 1200—1500 кВт-ч/т металла. Катоды изготовляют из алюминия. [c.394]

    Теллур применяется в качестве присадки к чугуну, стали, в том числе нержавеющей, цветным металлам и сплавам (олово, свииец, медь) Микродобавки теллура значительно улучшают структуру, механичес кие свойства и обрабатываемость чугуна и стали. Микродобавки тел лура (0,05—0,1 %) повышают механические и антикоррозионные свой ства свница. Сплав свиица с теллуром применяют для изготовления хи мической аппаратуры, используемой в производстве серной кислоты Оловянистые сплавы (баббиты), содержащие теллур (0,1—1,0%), ха рактеризуются повышенной твердостью, прочностью и износостойкостью. Теллур улучшает технологические свойства меди и медных сплавов, а также повышает их теплостойкость. [c.365]

    СО смесью соды и серы, выщелачивают сплав теплой водой и осажцают олово из раствора тиосолей разбавленной кислотой. Если материал содержит сурьму, надо еще произвести отделение сурьмы от олова. В противном случае можно остброжно обжечь сернистое олово и взвесить-его в виде оловянной кислоты, фильтр с остатком после сплавления присоединяют к азотнокислому фильтрату от нечистой оловянной кислоты и все выпаривают с серной кислотой. Свинец отфильтровывают и взвещивают в виде сернокислого. Фильтрат осаждают сероводородом и производят определение меди и кадмия, как описано выше. Фильтрат [после отделения uS и dS] кипятят для удаления сероводорода, после чего присоединяют его к первому фильтрату от нерастворившихся в разбавленной серной кислоте металлов. [c.585]

    Когда при анодировании в серной кислоте прессованного сплава Д-16 количество пропущенного электричества равно 90 а1дмР -мин., размер уменьшается на 14,2 мк (кривая 1 и рис. 50). Изменение размера рассчитывалось из данных о разности веса до анодирования и после снятия пленки и удельного веса сплава. В случае, если бы при переходе металла в окисную пленку (в пересчете па АЬОз), пленка не растворялась в электролите при анодировании, то имело бы место увеличение веса [c.102]

    Получение. Первой стадией получения бериллия является вскрытие берилла. Концентрат, содержащий берилл, спекают с известью, последующей обработкой сплава серной кислотой извлекают Ве80д и из него готовят Ве(ОН)г. Затем получают оксид БеО, хлорируют его в смеси с углем до ВеСЬ, Смесь ВеСЬ с Na l (Na l необходим для снижения температуры плавления и увеличения электропроводности) в расплавленном состоянии (350°С) подвергают электролизу. Металл, получаемый в виде, чешуек, отмывают от электролита и сплавляют в атмосфере аргона. [c.310]

    Равномерная коррозия металлов наблюдается в тех случаях, когда агрссснв11ые среды не образуют защитных пленок иа металле или когда сплав состоит из равномерно распределенных мелкозернистых анодных и катодных участков. Интенсивная равномерная коррозия наблюдается ири коррозии меди в азотной кислоте, железа в соляной кислоте, алюминия в едких щелочах, цинка в серной кислоте. В некоторых случаях равномерная коррозия ие вызывает значительного разрушения металла, тем ие меиее она может быть нежелательной из-за других причин (потускнение иоверхности металла, загрязнение раствора продуктами коррозии и др.). При равномерной коррозии продукты коррозии обычно не отлагаются иа поверхности металла. [c.160]

    В первом случае после действия агрессивной среды взвешивают образцы, обрав все продукты коррозии во-втором — необходимо все прод укты коррозии удалить. Если не удается собрать все продукты коррозии или они удалены не полностью, образец протирают до полного удаления продуктов коррозии. Если их при этом также не удается удалить, то прибегают к травлению иоверхности металла такими реагентами, которые растворяют только продукты коррозии, но ие металл. В частности, с поверхности алюминия продукты коррозии можно удалять 5%- или 6%-ным раствором азотной кислоты. Для стали можно рекомендовать 10%-иый раствор винно- или лимоннокислого аммония, нейтрализоваииого аммиаком (температура раствора 25— 100° С) для свинца, цинка и оцинкованной стали — насыщенный раствор уксуснокислого аммония, нейтрализованный аммиаком для меди и медных сплавов—5%-ный раствор серной кислоты, имеющий температуру 10—20 С. [c.337]

    Сплав алюминия и, неизвестного двухвалентного металла раст-вор1Иля в концентрированной азотной кислоте. Объем выделившегося газа равен 4,48 л. При обработке такого же количества сплава раствором щелочи выделялось 6,72 л газа. 0предел1ите качественный и процентный состав сплава, если (Известно, что пр(И растворении в концентрированной серной кислоте 12,8 г неизвестного металла, входящего в состав сплава, выделяется 4,48 л оксида серы (IV). Рассчитайте объем взрасходованного. 40%-ного раствора гидроксида натрия (пл. 1,44). [c.14]

    Еще Фладе заметил [6], что пассивная пленка на железе тем дольше остается устойчивой в серной кислоте, чем длительнее была предварительная пассивация железа в концентрированной азотной кислоте. Другими словами, пленка стабилизируется продолжительной выдержкой в пассивирующей среде. Франкенталь [17] заметил также, что хотя для пассивации 24 % Сг—Ее в 1 н. НаЗО достаточно менее монослоя Оа (измерено кулонометрически), пленка становится толще и устойчивее к катодному восстановлению, если сплав некоторое время выдержать при потенциалах положительнее потенциала пассивации (см. рис. 5.1). Возможно,. наблюдаемое стабилизирующее действие является результатом того, что положительно заряженные ионы металла проникают в адсорбированные слои отрицательно заряженных ионов и молекул кислорода благодаря сосуществованию противоположных зарядов поддерживается тенденция адсорбционной пленки к стабилизации. Данные метода дифракции медленных электронов для одиночных кристаллов никеля [28], например, свидетельствуют о том, что предварительно сформированная адсорбционная пленка состоит из упорядоченно расположенных ионов, кислорода и никеля, находящихся на поверхности металла приблизительно в одной плоскости. Этот первоначальный адсорбционный слой более термоустойчив, чем оксид N10. При повышенном давлении кислорода на первом слое образуется несколько адсорбционных слоев, состоящих, возможно, из Оа. В результате образуется аморфная пленка. С течением времени в такую пленку могут проникать дополнительные ионы металла, особенно при повышенных потенциалах, становясь подвижными в пределах адсорбированного кислородного слоя. Окамото и Шибата [29] показали, что пассивная пленка на нержавеющей стали 18-8 содержит НаО аналогичные результаты получены для пассивного железа [30]. [c.83]

    Не удивительно, что высокое содержание серной кислоты в промышленной и городской атмосфере существенно снижает срок службы металлических конструкций (см. табл. 8.2 и 8.3). Это особенно выражено в отношении металлов, не устойчивых к серной кислоте, таких как цинк, кадмий, никель и железо, и в меньшей степени касается металлов, устойчивых к разбавленной Н2504, например свинца, алюминия и нержавеющей стали. Медь, на поверхности которой образуется защитная пленка из основного сульфата меди, устойчивее никеля или сплава N1—Си (70 % N1), на которых образуются пленки с менее выраженными защитными свойствами. [c.176]

    В разбавленных соляной и серной кислотах марганец растворяется с образованием солей марганца (И) (МпС1г, Мп304) азотной и концентрированной серной кислотами марганец окисляется (в той или другой степени) с образованием солей, соответствующих высшим степеням окисления. При повышенной температуре марганец вступает в соединение со всеми неметаллами (галогенами, серой, азотом, фосфором, углеродом, кремнием), а с большинством металлов образует сплавы разного состава. В соединениях марганец проявляет степени окисления от 4-2 до +7. На примере этих соединений можно видеть, как влияет изменение степени окисления элемента на свойства окси-ДОВ 1- и ,1 [c.148]

    Опыт 11. Электролитическое оксидирование алюминия. Получение оксидных пленок на металлах путем электролиза называют электрохимическим оксидированием или анодированием. Оксидируют алюминий, сталь, медь и ее сплавы для различных целей, чаще всего для защиты от коррозии. Особенно широко распространено анодирование алюминия, увеличивающее его коррозионную стойкость. Анодирование алюминия производят в 15—20%-ном растворе серной кислоты с двойным свинцовым катодо.м. Анодная плотность тока 1 а/дм . Напряжение на клеммах ванны 10—12 в .  [c.201]

    Много ванадия как такового, а также в виде феррованадия используется для улучшения свойств специальных сталей, идущих на изготовление паровозных цилиндров, автомобильных и авиационных моторов, осей и рессор вагонов, пружин, инструментов и т. д. Малое количество ванадия подобно титану и марганцу способствует раскислению, а большое количество увеличивает твердость сплавов. Ниобий и тантал, как дорогие металлы, применяют для легирования сталей только в тех случаях, когда необходима устойчивость по отношению к высокой температуре и активным реагентам. Сплавы алюминия с присадкой ванадия используются как твердые, эластичные и устойчивые к действию морской воды материалы в конструкциях гидросамолетов, глиссеров, подводных лодок. Ниобий и ванадий — частые компоненты жаропрочных сплавов. Ниобий применяют при сварке разнородных металлов. VjOg служит хорошим катализатором для получения серной кислоты контактным методом. Свойства Та О., используются при приготовлении из него хороших электролитических танталовых конденсаторов и выпрямителей, лучших, чем алюминиевые (гл. XI, 3). [c.335]

    На заводе в гор. Окер (ФРГ) источник индия — остаток от рафинирования металлического цинка фракционной дистилляцией индий в остатке собирается вместе со свинцом, медью, железом и прочими малолетучими металлами. При охлаждении этот сплав разделяется на два слоя свинцовый (0,5—1,2% 1п) и цинковый (0,05—0,1% 1п). Чтобы извлечь индий, расплавленный свинцовый сплав при 800— 1000° подвергают окислительному рафинированию (купеляционная плавка). После окисления большей части присутствующего в сплаве цинка начинается совместное окисление свинца и индия. Получается жидкий глет, содержащий до 3—5% 1п. После охлаждения глет, в который переходит 10% всего свинца, размалывают, отсеивают от корольков свинца и выщелачивают серной кислотой. Из раствора на цинковых пластинах цементируют индиевую губку [118]. [c.315]

    Чугуны и стали, содержащие в качестве основного элемента железо, имеют серый или серебристый цвет и растворяются в соляной и серной кислотах. Для открытия железа в сплавах черных металлов сплав растворяют при нагревании в нескольких каплях концентрированной соляной кислоты. Перед окончанием растворения прибавляют каплю HNOg. После того как раствор остынет, добавляют каплю раствора NH4S N. В присутствии ионов появляется кроваво-красное окрашивание. [c.453]

    При обработке соляной кислотой сплава меди с двухвалентным металлом выделился водород объемом 276 мл (н.у.). Оставшийся сплав растворился после нагревания с концентрированной серной кислотой, а на поглощение выделившегося прн этом газа затрачен раствор NaOH объемом 18,75 мл при концентрации 2 моль/л. Определите второй металл и его массовую долю в сплаве, Ответ. Zn, 40%. [c.334]

    Покрытия с ценными свойствами можно получить нз ванны состава, г/л хромовый акгидрид 150, серная кислота 0,5—1,3, диоксид кремния (аморфный) 0.2Б—0,45 при 40—75 С, / =50 А/дм , t/=3+9 В Процесс длится до 3,5 ч. Дисперсность частиц кремнезема 0,01—0,02 мкм Покрытия могут быть нанесены непосредственно на алюминий и другие легкопассивирующиеся металлы и сплавы. После легкого нолнровання покрытие становится блестящим, не корродирует и не отслаивается прн испытаниях в течение сотен часов в камере солевого тумана. Твердость покрытий после З-ч выдержки прн ПОО С составляет 23 ГПа [35] [c.190]


Смотреть страницы где упоминается термин Серная кислота металлов и сплавов: [c.17]    [c.841]    [c.294]    [c.554]    [c.54]    [c.269]    [c.170]    [c.328]    [c.482]    [c.417]    [c.104]   
Справочник механика химического завода (1950) -- [ c.377 , c.383 , c.385 ]




ПОИСК





Смотрите так же термины и статьи:

Кислоты Ба металлы

Кислоты металлы и сплавы

Металлы серной

Металлы сплавы

Сплавы и металлы металлов

Сплавы серной



© 2025 chem21.info Реклама на сайте