Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Меди сплавы растворение в кислотах

    Пример 2. При растворении 52 г сплава цинка с медью в азотной кислоте выделилась смесь оксида азота (II) и азота объемом 12,39 л, измеренным при температуре 24 °С и давлении 1,05-10 Па. Вычислите массовую долю (%) меди и цинка в сплаве. [c.149]

    Закономерности типичного процесса ЭХП металлов можно проследить на классическом примере полирования меди в фосфорной кислоте. На рис. 12.1. приведена анодная поляризационная кривая, характеризующая этот пример. На участке АБ поляризационной кривой ( активное растворение металла) в результате проявления энергетических неоднородностей различных граней поликристаллического металла происходит травление поверхности анода, поверхность после обработки шероховатая. Прн анодном растворении металлов и сплавов в активном состоянии проявляется неоднородность структуры, фазового состава, различие в скорости растворения компонентов сплава. [c.76]


    Электролитическое растворение применяется для перевода в раствор кобальта из металлических или сульфидных кобальтсодержащих сплавов. Основными компонентами таких сплавов, кроме кобальта, являются железо, никель и медь. Анодное растворение металлических сплавов производится в подогретом растворе серной кислоть[. При этом на катоде основным процессом является выделение водорода. Кобальт, никель и железо из-за большой катодной поляризации в кислом растворе полностью остаются в электролите. Медь, растворившаяся на аноде, почти нацело осаждается на катоде, поэтому растворы, полученные анодным растворением, практически не содержат меди, что облегчает последующую их переработку. По мере электролиза раствор становится все менее кислым. Процесс прекращают, когда достигается почти полная нейтрализация электролита. [c.95]

    Пример 5. При растворении 36 г сплава цинка с медью в азотной кислоте выделилось 6,58 л газообразных продуктов при 24° С и 792 мм рт. ст. Вычислить процентный сост.1В сплава, если это взаимодействие выражается уравнениями [c.55]

    Подготовка раствора для анализа. Чаще всего олово приходится определять в сплавах с другими металлами. Наиболее важные сплавы-олова — это различные бронзы (медь, олово, железо), припои (олово, свинец), типографские сплавы (сурьма, олово, свинец), латуни (цинк, медь, олово). В этих сплавах олово определяют после растворения навески в азотной кислоте, при этом, как было сказано, образуется нерастворимая -оловянная кислота. [c.173]

    Раствор, полученный растворением в кислоте 0,45 г латуни (сплав цинка с медью), был подвергнут электролизу. Для выделения всей меди из раствора потребовалось 482,5 кулона электричества. Определить процентное содержание меди в латуни. [c.177]

    Какого цвета должен быть раствор, полученный при растворении образца латуни (сплав меди с цинком) в азотной кислоте  [c.92]

    Из мешающих элементов в медных сплавах чаще всего присутствуют олово, сурьма, железо, иногда серебро. При растворении сплава в азотной кислоте олово и сурьма выделяются в виде нерастворимых оловянной или сурьмяной кислот и должны быть отделены фильтрованием. Однако некоторое количество меди увлекается из раствора осадками этих кислот. Поэтому при точных анализах необходимо выделить следы меди из осадка оловянной и сурьмяной кислот. Это может быть достигнуто путем обработки осадка щелочным раствором сернистого натрия, причем олово и сурьма переходят в раствор в виде тиосолей  [c.208]


    В разбавленной соляной кислоте силавы, содержащие 5% сурьмы, более устойчивы, чем олово, но в лимонной кислоте эта разница незаметна. Б жесткой воде оловянные припои не подвержены местной коррозии. Сплав, содержащий 25% цинка, легко пассивируется при катодной поляризации. Примеси меди ускоряют растворение с водородной деполяризацией, но слабо [c.144]

    Рассчитайте процесс аффинажа серебряного сплава состава 87,5 % Ag, 12,5 % u. Анодно растворяются оба компонента сплава на катоде осаждается только серебро с выходом по току 100 %, Для аффинажа использованы ванны нагрузкой I = 1000 А, объем электролита = 550 л. Ванны работают периодически до обеднения азотнокислого электролита серебром или обогащения его медью. Нижний предел содержания серебра в растворе fAg+] j,H =- 8 г/л, верхний предел [Ag"i , 50 г/л. Максимально допустимое содержание меди t u- l == 55 г/л. После обеднения раствора серебром часть электролита заменяют новым, полученным растворением лигатуры в азотной кислоте. Состав этого раствора fAg lj, = = 452 р/л. i u lj, = 64,4 г/л, концентрация свободной HNO , 20 г/л. Обогащенный медью раствор удаляют из ванны для контактного осаждения серебра металлической медью. [c.239]

    Таким образом, при взаимодействии меди с растворами серной кислоты решающую роль играет кислород воздуха, присутствия которого трудно избежать и на производстве и даже в лабораторных опытах. Этим, между прочим, можно объяснить частые расхождения при. определении коррозионных поте,рь меди и ее сплавов различными исследователями. Определить в процессе коррозионных испытаний с требуемой точностью степень аэрации исследуемых растворов удается далеко не всегда. Между тем известно, что скорость растворения меди в серной кислоте пропорциональна количеству растворенного в последней кислорода. В неподвижных растворах скорость коррозии зависит от проникновения кислорода через поверхность жидкости и пропорциональна содержанию кислорода в газовой фазе. [c.220]

    Медь образует сплав с неизвестным металлом, который в соединениях проявляет степень окисления +2. Массовая доля меди в сплаве составляет 90,8%. При растворении образца сплава массой 70,5 г в концентрированной серной кислоте выделился оксид серы (IV) объемом 24,64 л (нормальные условия). Какой металл образует сплав с медью (Других газов при взаимодействии сплава с серной кислотой не образуется.) Ответ цинк. [c.276]

    Щелочной способ растворения позволяет определять цинк при его содержании менее 0,3% и также пригоден для сплавов, содержащих никель. При растворении сплава в кислоте одновременно с цинком может быть определена и медь, восстанавливающаяся при потенциале —0,24 и —0,56 в. [c.107]

    Какой объем 30%-ного раствора азотной кислоты (пл. 1,18 г см ) будет израсходован на растворение 10 г сплава, состоящего из 60% меди и 40% серебра, если предположить, что азотная кислота восстанавливается до окиси азота  [c.277]

    Из цветных сплавов важное значение имеют сплавы меди (латуни, бронзы). Определение главных составных частей этих сплавов также было описано в предыдущих параграфах. Медь и свинец чаще всего определяют электролитически, как указано в 55 и 56. Для определения олова обычно пользуются йодометрическим методом, подробно описанным ниже. Подготовка сплава меди к определению олова состоит в растворении навески в смеси азотной и соляной кислот и отделении олова от меди двукратным осаждением гидроокисью аммония в присутствии хлорного железа (коллектор). Осадок гидроокисей железа и олова (и др.) растворяют затем в соляной кислоте, восстанавливают четырехвалентное олово до двухвалентного каким-нибудь металлом (железом, свинцом или др.) и титруют рабочим раствором йода. [c.456]

    Для определения фосфора сплав меди растворяют в азотной кислоте и из полученного раствора осаждают фосфат-ион молибденовой жидкостью. В случае присутствия олова при растворении сплава в азотной кислоте образуется оловянная кислота, адсорбирующая из раствора фосфорную кислоту (см. 43). Тогда азотнокислый раствор сплава предварительно выпаривают несколько раз досуха, добавляя каждый раз соляную кислоту для удаления большей части олова в виде летучего хлорного олова, после чего осаждают фосфат-ион обычным способом. [c.456]

    Для переработки бедных алюминием отработанных анодных сплавов, получаемых в последнее время, пригодны только кислотные методы. Применявшиеся раньше [3] щелочные методы разложения анодных сплавов (выщелачивание раствором едкого натра) дают удовлетворительное извлечение только в применении к сплавам, содержащим 25—30% алюминия. Разлагать сплав можно как выщелачиванием измельченного сплава серной или соляной кислотой, так и анодным растворением [3]. В раствор наряду с галлием и алюминием переходят также железо и частично (за счет окисления кислородом воздуха) медь. Так как железо осаждается купферроном, в этом случае применять для выделения галлия купферрон невыгодно, и перерабатывают растворы экстракционным путем, используя бутилацетат или трибутилфосфат. Если разложение велось серной кислотой, к раствору добавляется соответствующее количество хлорида натрия. Чтобы отделить железо, раствор перед экстракцией обрабатывают каким-либо восстановителем, например железной стружкой. Для реэкстракции галлия из органического слоя последний промывают водой. После экстракции следует очистка от примесей молибдена и олова осаждением сернистым натрием и, наконец, электролиз щелочного раствора галлата с целью получения металлического галлия. [c.257]


    Методика определения. Навеску алюминиевого сплава 0,1 г обрабатывают без подогревания 5 мл хлористоводородной кислоты (1 1) в стакане емкостью 100—150 мл. При этом алюминий, магний и другие элементы переходят в раствор, весь же висмут, а также большая часть свинца и меди остаются в остатке. По окончании растворения немедленно прибавляют 5 мл дистиллированной воды и нерастворившийся остаток отфильтровывают на маленьком бумажном фильтре, промывая его 2 раза небольшими порциями горячей воды. Отфильтровывание и промывание остатка следует проводить возможно быстро, иначе для висмута получаются заниженные результаты. Промытый осадок растворяют па фильтре в 5—10 мл горячей азотной кислоты (1 1), собирая жидкость в мерную колбу емкостью 50 мл. Фильтр промывают небольшими порциями азотной кислоты (1 10), а затем водой. Промывные воды собирают в ту же колбу. В колбу вводят 10 aia насыщенного водного раствора тиомочевины и раствор разбавляют водой до 50 мл. Измеряют оптическую плотность раствора на фотоэлектроколориметре с синим светофильтром. [c.377]

    Фотометрический метод, описанный на стр. 40, основан на реакции кобальта с нитрозо-Р-солью. Этот метод применим для определения кобальта в 2г10, 2г30 и в гафнии и используется в тех случаях, когда спектральные методы неприменимы или когда необходим точный анализ. К анализируемому сплаву 2г30, содержащему медь, до растворения пробы добавляют 0,1 г высокочистого титана, а осажденную медь перед окислением раствора азотной кислотой отфильтровывают. [c.133]

    Анализируемый материал нередко переводят в раствор действием азотной кислоты или ее смеси с хлороводородной кислотой. Растворение сопровождается окислением составных частей пробы. Так, при анализе медных сплавов их растворяют в азотной кислоте, причем металлическая медь окисляется до Си +, а азот в азотной кислоте восстанавливается до N0 или N02. [c.371]

    Наличие около 0,1% примеси железа в чистом алюминии повышает его скорость растворения в 2 н. соляной кислоте в 160 раз, а содержание 0,1% меди — в 1600 раз. Кремний и магний практически не оказывают вредного влияния на коррозионную устойчивость алюминия. Цинк в небольших количествах также безвреден, но алюминиевые сплавы, содержаш,не магний и цинк, неустойчивы. Коррозионную устойчивость этих сплавов повышают путем дополнительного легирования медью, хромом или ванадием. Свинец не оказывает никакого влияния при содержании до 0,5—1,4%. Кобальт и никель чаще всего более вредны, чем медь. [c.133]

    Большое ускорение коррозии в кислотах отмечено у цинка, содержащего в виде примесей железо и олово или медь. Магний, корродирующий даже в нейтральном электролите с водородной деполяризацией, также подвергается сильной коррозии при загрязнении его железом. Введение в состав сплава примесей с повышенным перенапряжением или вторичное их осаждение на поверхности основного металла, наоборот, должно привести к уменьшению скорости растворения сплава. Например, скорость коррозии железа резко уменьшается в кислоте при введении в нее мышьяковистых соединений. Вторичное осаждение на поверхности железа мышьяка, обладающего высоким [c.10]

    При обр1аб Отке сплава, золота и меди онцентряроваяиой азотной кислотой выделилось 4,48 л газа. Пр И раствореняя остатка в царской водке (смесь трех объемов соляной кислоты и одного объема [c.30]

    Какова масса 10%-ной азотной кислоты, необходимая для растворения 1 г медно-нигелевого сплава и суммарный объем выделяющихся газсобразных оксидов азота при н. у. Считать, что медь иосстанавливает азотную кислоту до N0, а никель — дс МгО. Сплавы  [c.61]

    Получают обычно растворением сплава серебра с медью в азотной кислоте при нагревании, с последующим сч аждением серебра соляной кислотой и восстановлением образовави1егося хлорида серебра цинком и разбавленной серной или соляной кислотой полученное чистое серебро вторично растворя)от в азотной кислоте  [c.94]

    ЛУЖЕНИЕ — нанесение на поверхность металлических изделий тонкого слоя олова. Оловянные покрытия (толщиной 0,2 — 10 мкм) защищают изделия из стали, меди, меди сплавов и др. от коррозии металлов. На др. изделия, нанр. из титана и титана сплавов, олово наносят перед пайкой мягкими припоями, а также для снижения сопротивления деформированию при обработке давлением. В некоторых случаях Л. дает возможность защищать участки стальных изделий от диффузии азота при азотировании, предохранять медные изделия от разрушающего действия серы при гуммировании. Пористость оловянных покрытий зависит от способа нанесения и толщины слоя олова напр., при элект-тролитическом и горячем Л. жести при толщине 0,2—2,5 мкм она составляет от 10 до 1 поры на 1 см поверхности, при толщине более 3 мкм образуется практически бес-пористоо покрытие. Пористость покрытий на изделиях, находящихся во влажной воздушной среде или в различных неорганических средах, должна быть минимальной, поскольку в этих условиях покрытие является катодным и каждая пора становится очагом интенсивной коррозии металла основы. Пористость покрытий, взаимодействующих с растворами многих органических кислот (напр., щавелевой, лимонной, яблочной), вызывает растворение нетоксичного олова, к-рое является в данных условиях анодным и захцища-ет изделия от коррозии электрохимически. Чтобы затормозить растворение олова и в определенной степени ослабить действие на него органической среды, такие аокры-тия дополнительно лакируют. [c.716]

    Почему при определении меди электролизом после растворения навески сплава в царской водке удаляют избыток азотной кислоты Напишите уравнение реакции растворения сульфида меди в азотной кислоте и вычислите грамм-эквивалент uS и HNO3 в этих реакциях. [c.93]

    Металлическое серебро, имеющее примеси, в частности медь, перерабатывают следующим способом. Серебро растворяют в разбавленной азотной кислоте, раствор выпаривают и нитраты нагревают до сплавления. При этом нитрат меди частично разлагается с образованием окиси меди. Сплав растворяют в 10—15-процентном растворе аммиака. (Голубая окраска указывает на наличие в исходном сплаве меди.) Затем к раствору добавляют в избытке сульфит аммония или сульфит натрия и смесь нагревают до 60—70° С. При этом серебро восстанавливается до металла, а медь до аммиаката, где она одновалентна. После обесцвечивания раствора его еще продолжают нагревать в течение 15—20 мин. Затем осадок серебра промывают способом декантации, заливают раствором аммиака и выдерживают в течение суток для растворения возможных примесей соединений меди. После этого осадок еще раз промывают и высушивают. Для получения серебра в виде слитка его сплавляют в фарфоровом тигле с 5% безводной буры и 0,5% калийной селитры (считая от массы слитка). После охлаждения тигля его разбивают и королек кипятят в разбавленной соляной кислоте для удаления приставших к нему солей. [c.172]

    Стальные и никелевые тигли и чашки служат для прокаливания вспомогательных материалов (например, оксида меди для аналитических целей), а также в качестве сосудов для песчаных, масляных и металлических бань. Никель окисляется на воздухе при повышенной температуре. Поэтому никелевые тигли не могут служить для прокаливания осадков, которые надо затем взвешивать. Очень удобны никелевые тигли для сплавления различных веществ с КагОг, NaOH и КОН. Такие тигли могут выдержать большое число сплавлений. Стальные тигли также можно применять для сплавления с НагОг, но они быстрее изнашиваются. Следует учитывать, что при последующем растворении сплавов в кислотах раствор загрязняется железом. [c.72]

    Б 0,1-н. серной кислоте, деаэрированной н насыщенной воздухом, контакт алюминиевых сплавов 25, 245, 6151 с титаном и цирконием практически не увеличивает скорости их корро-, 1 .и [116]. При коррозии алюминия, содержащего 0,0001—0,06% меди, в 1—26%-ных растворах соляной кислоты, медь при растворении алюминия переходит в раствор, а затем высаживается на поверхности металла. Мономолекулярный слой меди сущест- 5енно ускоряет коррозию алюминия [89]. [c.63]

    Ход определения. Навеску сплава (1 г) растворяют в смеси 100 мл разбавленной (1 4) H2SO4 с 1 мл разбавленной (1 1) HN0.1. По окончании растворения навески к раствору прибавляют несколько миллилитров 10%-ного раствора сульфата гидразина (N2H4-H2SO4) для восстановления азотистой кислоты и окислов азота, мешающих осаждению меди на катоде. Разбавляют раствор до 150 мл, нагревают до 60—65° С и подвергают внутреннему электролизу. Для этого опускают в раствор электродную пару, состоящую из цинкового анода и платинового сетчатого катода , собранную, как показано на рис. 63. Предварительно тщательно зачищают контакты анода и катода, поверхность цинкового анода и хорошо закрепляют их в соответствующих клеммах. [c.451]

    Даже если скорость коррозии медных труб не слишком высока и они эксплуатируются достаточно долгое время, то продукты коррозии меди и медных сплавов, которые образуютсяМ1ри наличии в воде угольной и других кислот, могут вызывать окрашивание сантехнического оборудования. При контакте с такой водой усиливается коррозия железа, оцинкованной стали и алюминия. Это связано с протеканием реакции замещения, при которой металлическая медь осаждается на основном металле и образуются многочисленные небольшие гальванические элементы. При обработке кислых вод или вод с отрицательным значением индекса насыщения известью или силикатом натрия скорость коррозии падает до достаточно низких значений, чтобы прекратилось окрашивание и усиление коррозии других металлов, за исключением алюминия. Он чувствителен к присутствию в растворе чрезвычайно малых количеств ионов Си +, и обычная обработка воды не способна уменьшить содержание этих ионов до безопасного уровня. Ввиду токсичности растворенной меди служба здравоохранения США установила значение ее предельно допустимой концентрации в питьевой воде, равное 1 мг/л [7]. [c.328]

    На очищенную поверхность образца помешают каплю раствора HNOj ( J9 = 1,4 г/см ). Через 1 н добавляют 2-3 капли раствора N Н 4 О Н. Образование фиол,. ового окрашивания, характерного для комплексного соединения указывает на присутствие Си -ионов в сплаве. Написать уравнения рюакций растворения меди в концентрированной азотной кислоте и образования аммиачного комплекса нитрата меди (П). [c.121]

    Для анализа сплава меди с двухвалентным металлом были взяты две навески массой по 2,0 каждая. Первая была обработана соляной кислотой, что привело к частичному растворению сплава и выделению водорода объедюм 69 мл (н. у.),. Вторая навеска полностью растворилась с выделением оксида азота (IV) в растворе азотной кислоты, для которого массовая доля HNO3 составляет 48%, а объем раствора равен 12,62 мл. Определите массовый состав сплава. Ответ 10% Zn и 90% Си, [c.37]

    Межкристаллитная коррозия алюминия и его сплавов может распространяться локально на отдельных участках в местах концентрации напряжений. Причиной этого вида коррозии является отложение легирующих элементов по границам зерен. В алюминиевомедных сплавах межкристаллитная коррозия объясняется растворением обедненных медью границ металлов. Склонность алюминиевых сплавов к межкристаллитной коррозии зависит как от состава сплава, так и от термообработки или деформации. Алюминиевые сплавы, легированные магнием, не склонны к межкристаллитной коррозии. Алюминий высокой чистоты не подвергается межкристаллитной коррозии в соляной кислоте. [c.123]


Смотреть страницы где упоминается термин Меди сплавы растворение в кислотах: [c.109]    [c.405]    [c.145]    [c.329]    [c.330]    [c.24]    [c.166]    [c.122]   
Методы разложения в аналитической химии (1984) -- [ c.195 , c.382 , c.403 ]




ПОИСК





Смотрите так же термины и статьи:

Медь сплавы



© 2025 chem21.info Реклама на сайте