Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

спектроскопия кюветы

    Спектроскопия в видимой и ультрафиолетовой области. Прибор состоит из тех же узлов, что и при исследовании ИК-спектра. Источники излучения — лампы накаливания и разрядные трубки. Кюветы и призмы делают из веществ, пропускающих излучение. Для видимой области это стекло, для ближней ульт- [c.150]

    Особенностью ИК спектроскопии является то, что стекло и кварц в средней ИК области спектра оказываются непрозрачными для ИК излучения. Поэтому оптические детали спектрофотометра (призмы, линзы, кюветы для вещества) изготавливаются из солей щелочных и щелочноземельных [c.142]


    В последние годы получили развитие исследования мессбауэровских спектров при высоких давлениях (до мегабар). Интервал достигаемых давлений определяется наличием сверхпрочных материалов, например, таких, как алмаз, и соответствующей конструкцией камеры с образцом (аналогично кюветам высокого давления в ИК спектроскопии и рентгеноструктурном анализе). Хотя высокие давления сравнительно слабо влияют на электронные оболочки атомов, измеряемые в зависимости от давления параметры мессбауэровских спектров несут новую информацию о взаимодействии ядра с электронным окружением. По сравнению с другими методами мессбауэровская спектроскопия в исследованиях при высоких давлениях отличается даже большей чувствительностью к изменениям энергии взаи.модействия. [c.130]

    Измеряя оптическую плотность раствора, содержащего вещество с известным спектром поглощения, т. е. известной зависимостью коэффициента экстинкции е от длины волны X, нетрудно определить его концентрацию в растворе. Для этого достаточно измерить оптическую плотность при одной длине волны [обычно для этого проводят измерение при длине волны, соответствующей максимуму на кривой е( 1)1 в кювете известной толщины. Соотношение (10.6) сразу же дает неизвестную нам величину концентрации С. В связи с этим спектроскопия в видимой и ультрафиолетовой области является важным методом определения концентраций веществ (количественного анализа). [c.153]

    Колебательная инфракрасная спектроскопия (ИК-спектроскопия) наряду с электронной спектроскопией в видимой и ультрафиолетовой области — один из важных источников информации о строении молекул. Для получения инфракрасных спектров поглощения используют специальные приборы — инфракрасные спектрометры. Принцип действия их сходен с принципом действия спектрофотометров. Однако для этой области спектра используются специфические источники излучения, специфические методы регистрации излучения и специальные материалы для призм и кювет. [c.155]

    Кюветы. В оптической абсорбционной спектроскопии исследуют преимущественно жидкие пробы, которые помещают в кюветы, обеспечивающие определенную толщину поглощающего слоя. Окна кюветы должны быть хорошо проницаемыми в соответствующей спектральной области (табл. 5.19). Сведения о некоторых типах используемых кювет приведены в табл. 5.21. [c.238]


    Наряду с рассмотренными типами кювет имеются кюветы особой формы, например, с переменной толщиной слоя или кюветы для инфракрасной спектроскопии газов (толщина слоя 1—10 м). Для измерения поглощения в зависимости от температуры (например, при изучении равновесий) в интервале от —100 до +200 С разработаны специальные термостатируемые кюветы. Для работы с очень малыми количествами веществ имеются микрокюветы (для инфракрасной спектроскопии объемом < 1 мм ). [c.238]

    Спектрографы служат, главным образом, для работы с эмиссионными спектрами. В абсорбционной спектроскопии фотографические методы регистрации применяют в настоящее время сравнительно редко. Тем не менее любой спектрограф может быть легко использован для получения спектров поглощения, если только имеются источник сплошного излучения и кюветы для работы в соответствующей области спектра. Обычно все спектрографы снабжаются комплектом приспособлений, которые рассчитаны для работы со спектрами испускания, однако для некоторых из них выпускают и абсорбционные комплекты. [c.125]

    В качестве диспергирующей системы используется призма постоянного отклонения. Переход от одной области спектра к другой осуществляют с помощью барабана, вращение которого связано с поворотом призменного столика. По шкале барабана отмечается угол его поворота, который можно проградуировать по известному спектру. Ширину входной и выходной щелей регулируют вручную независимо друг от друга. Вместо выходной щели в приборе можно устанавливать окуляр, что превращает его в спектроскоп. Вследствие небольшой дисперсии прибор можно успешно применять только при работе с простыми эмиссионными или абсорбционными спектрами. Прибор очень удобен для учебных целей. В его комплект входят источник сплошного света, абсорбционные кюветы и регистрирующее устройство, состоящее из фотоэлемента и зеркального гальванометра. Кроме того, имеются ртутная и неоновая лампы для градуировки шкалы прибора. [c.147]

    Периодическая или непрерывная запись спектра. Во многих случаях реакцию можно провести в кювете, помещенной в прибор, и тогда задача сводится к периодическому или непрерывному считыванию показаний прибора. Для этих целей широко используются поляриметрия, ИК-, УФ-, ЯМР- и ЭПР-спектроскопия [24]. [c.291]

    Хотя требования к чистоте растворителей, применяемых в ИК-спектроскопии, не такие жесткие, как в УФ-спектроскопии, выбор подходящего растворителя может быть сопряжен с большими трудностями. Первая из них состоит в том, что не существует растворителей, полностью прозрачных в ИК-области спектра. Поэтому выбирают растворители с возможно меньшим числом полос поглощения и используют тонкие кюветы с более концентрированными растворами, чтобы уменьшить поглощение растворителя. Для компенсации поглощения растворителя на пути луча помещают кювету сравнения с чистым растворителем. Если исследуемое вещество растворяется в неполярном растворителе, то при толщине кюветы менее 0,5 мм можно записать весь ИК-спектр в средней области, используя два растворителя четыреххлористый углерод и сероуглерод (табл. 20). [c.207]

    Как и при всех спектроскопических измерениях, при работе в ИК-области необходимо пользоваться растворителями, не поглощающими в нужных областях спектра и не влияющими как на исследуемые соединения (ассоциация, сольволиз и т. д.), так и на вещество стенок кювет, которые обычно делаются из хлористого натрия или калия. Очень удобным почти во всех случаях является четырех- хлористый углерод, иногда можно воспользоваться углеводородами. В руководствах по спектроскопии приводятся области поглощения для обычно потребляемых растворителей. [c.45]

    Исследования проводят в откачанных гептановых растворах с концентрацией перекиси ацетила 4Х Х-10 2 моль/л и сенсибилизатора 10- моль/л. Распад перекиси в жидком растворе в гептане изучают по выделению СОа, концентрацию которого в газовой фазе над раствором определяют с помощью ИК-спектроскопии по полосе поглощения 2349-3 см в специальной кювете (рис. 5.21а). [c.271]

    Методы ИК-спектроскопии. Вода характеризуется максимумом поглощения в ближней области ИК-спек-тра 1,94 мкм, который используют для определения влаги в различных материалах. Так, при определении воды в пищевых продуктах навеску образца диспергируют в диметилсульфоксиде, который спустя 2—4 ч практически полностью экстрагирует воду. После окончания экстракции наливают экстракт в 1-сантиметровую кварцевую кювету и измеряют оптическую плотность экстракта. В интервале 0,00—0,70 мл воды в 100 мл раствора наблюдается линейная зависимость между оптической плотностью и содержанием воды. Точность определения соизмерима с точностью определения воды химическим методом Карла Фишера.. [c.638]

    Основная помеха при сильной растяжке ординаты спектра — наличие наклонной (неровной) нулевой линии и большого фона, что может быть обусловлено такими факторами рассеяние света, наличие интерференционных полос, поглощение растворителя матрицы или примесей, край поглощения кюветы. Большинство искажений можно исключить, производя при помощи ЭВМ вычитание спектров. Одним из преимуществ метода получения разностных спектров при помощи ЭВМ по сравнению с обычной дифференциальной ИК-спектроскопией является возможность применять его при любом способе приготовления образца. [c.768]


    Первая из них легко преодолевается путем использования вращения ( 2000 об/мин) образца или быстрого сканирования лазерным лучом по поверхности образца. Вторую трудность преодолеть нелегко, если не уменьшить путь рассеивающего пучка в среде до минимума. Другая более тонкая процедура состоит в использовании дифференциальной спектроскопии КР с вращающейся кюветой, разделенной на две половины, вместе с совершенной электронной системой сравнения. Наличие отсеков для исследуемого образца и образца сравнения исключает необходимость внутреннего стандарта. Вероятность фотолиза при вращении образца также уменьшается. Влияние флуоресценции эффективно исключается лишь дискриминацией сигнала во времени. Методика основана на возбуждении комбинационного рассеяния импульсным лазером с длительностью импульсов порядка нано- [c.776]

    Базовые данные для ИК-Фурье спектроскопии на газовой кювете [c.74]

    При последней перегонке остаточная вода удаляется в виде азеотропной смеси с ацетонитрилом (предельная температура кипения 76,0 °С при 14,2% П20).В нашей практике было принято отбрасывать дистиллят, получаемый при температуре ниже температуры кипения ацетонитрила (82,0 °С при 760 мм). Обычно это количество достигало 100 мл при исходном количестве 4 л. Затем дистиллят анализировался с помощью ультрафиолетовой спектроскопии при 2000 А в кювете толщиной 1 см поглощение продуктом составляло менее 1,00. Время выдержки растворителя, необходимое для получения удовлетворительного ультрафиолетового поглощения, изменялось при переходе от одной партии растворителя к другой. Во многих случаях растворитель был готов к употреблению практически сразу после удаления азеотропной смеси. [c.10]

    К методикам, предусматривающим компенсацию поглощения растворителем, при анализе водных систем необходимо относиться с осторожностью. Вид компенсации, когда в основной канал прибора помещена кювета с исследуемым раствором, а в канал сравнения -кювета с водой, является некорректным, поскольку раствор есть химическая система, т. е. вода взаимодействует с растворенным веществом. В результате фактической компенсации поглощения не происходит. Таким образом, приступая к исследованиям водных коррозионных сред, нужно четко представлять те возможности и трудности, которые связаны с использованием метода ИК-спектроскопии. [c.201]

    Приборы, применяемые для инфракрасной спектроскопии. В исчерпывающем обзоре Вильямса [481 описан ряд приборов для получения спектров в инфракрасной области, а также изложены общие методические положения. В обзоре Шеппарда [391 содержится описание более поздних усовершенствований. Поэтому здесь приборы подробно не рассматриваются. Обычно инфракрасный спектр получается пзггем пропускания через вещество излучения горячего тела с последующим -изучением прошедшей энергии для определения той ее части, которая поглощается веществом. На рис. 1 приведена простая схема типового однолучевого регистрирующего инфракрасного спектрофотометра. Он состоит из источника радиации, чаще всего раскаленного штифта из окислов металлов или карбида кремния, нагреваемого электрическим током. Сферическим зеркалом излучение фокусируется на входную щель 3 , впереди которой устанавливается кювета, содержащая вещество. Коллиматорное зеркало делает пучок параллельным, после чего он дважды проходит через призму назад на [c.313]

    При измерении спектров поглощения в ультрафиолетовой области в качестве источника света используется водородная (дейтеривая) лампа (200—350 нм), а кюветы для раствора вещества, призма и вся оптика в приборе должны быть изготовлены из кварца (обычное стекло непрозрачно для коротковолнового излучения). При работе в видимой области используют тот же прибор, но в качестве источника излучения применяют лампу накаливания (от 350 нм и далее), а кюветы могут быть изготовлены из обычного стекла. В качестве растворителей в УФ спектроскопии применяют вещества, не имеющие поглощения в исследуемой области спектра и не вступающие в химическое взаимодействие с растворенным веществом (см. табл. 1). Для измерения электронных спектров поглощения обычно используют сильно разбавленные растворы (10 —10" моль/л). [c.129]

    HNO3 НгО==1 1 2) методом атомно-абсорбционной спектроскопии (ААС) с граф и повой кюветой. При таком концентрировании предел обнаружения может иметь порядок 1 нг/см . В табл. Д.ЗЗ приведены результаты анализа воды. [c.423]

    Определение количества гидроксильных групп на поверхности исследуемых адсорбентов, в частности, кремнеземов, можно произвести методом ИК спектроскопии с помощью вспомогательного, также участвующего в дейтерообмене, достаточно прозрачного в ИК области спектра адсорбента. В качестве вспомогательного адсорбента используют пластинку из спрессованного аэросила или пористую пленку органического полимера, содержащую доступные для дейтерообмена гидроксильные группы. Вспомогательный адсорбент помещают в вакуумную кювету ИК спектрометра, которая может быть соединена с вакуумной бюреткой с ОгО, с ампулой, содержащей исследуемый адсорбент, и с откачиой системой. После откачки вспомогательного адсорбента его поверхностные группы ОН полностью заменяют на группы 00 и снова откачивают при комнатной температуре. Далее откачивают при нужной температуре исследуемый адсорбент, соединяют содержащую его ампулу с кюветой со вспомогательным адсорбентом и в эту систему вводят определенное количество молей пара ОгО. Происходит дейтерообмен, за которым следят, наблюдая в ИК спектре уменьшение интенсивности полосы поглощения в области валентных колебаний 00 (полосы ОО и ОН хорошо разделяются). После установления равновесия с газовой фазой отношения концентраций Н/0 на обоих адсорбентах и в газовой фазе оказываются настолько близкими, что их можно принять равными друг другу. Величину этого отношения Н/0 = 7( можно определить из исходного и равновесного ИК спектров вспомогательного образца  [c.53]

    Методом инфракрасной спектроскопии жидкие вещества можно исследовать в виде тонких пленок. Для этого несколько капель вещества помещают между дисками из КВг или МаС1, выполняющими роль окон кюветы, и затем снимают спектр. [c.239]

    Абсорбционная спектроскопия. Многие вещества по- Ч)(рот( Л1етр глощают свет в видимой области спектра или, что (. чио, и 1. (. рять бывзет чаще, в ультрафиолетовой. Спектрофото-по и> 1л ти снег метр — это прибор для измерения поглощения света различных длин волн. Представьте себе, что реакция происходит в оптической кювете спектрофотометра, тогда изменение спектра поглощения может служить для наблюдения за ходом реакции А- - С (рис. 14.5). [c.326]

    Исследована возможность использования ИК - Фурье спектроскопии для идентификации примесных составляющих газовых сред. В основу разработки методики положен принцип совмещения возможностей ИК -Фурье спектрометра и газоанализатора Колион - I А, основанного на принципе фотоионизации исследуемого вещества и последующей регистрации ионизированных электронов. Приборами класса Колион удается определять лишь суммарную концентрацию примесных компонентов и вероятность превышения ПДК идентифицируемых примесей. ИК - Фурье спектрометры обладают достаточно высокой чувствительностью и при определенных условиях (например, в случае использования газовой кюветы достаточной длины) позволяют обнаружить многие компоненты в атмосфере с чувствительностью несколько частиц на миллион и идентифицировать эти компоненты. Точность определения концентрации вещества с помощью газоанализатора Колион -1А несравненно выше, чем у РСС - спектроскопии. Поэтому идентификация вещества с помощью ИК - Фурье спектрометра и уточнение его концентрации на газоанализаторе позволяет решить некоторые аналитические проблемы с приемлемой точностью. [c.73]

    Нами на различных смесях органических соединений получены базовые данные для ИК- Фурье спектроскопии на газовой кювете 0.1м, позволяющие идентифицировать ряд компонентов в воздухе рабочей зоны аммиак, бензол, метан, бромбензол, сероводород, озон и т.д.(см. таблицу). Эти данные легли в основу проекта многоходовой газовой кюветы с возможностью изменения её длины (вплоть до Юм) для установления параметров и режимов совместной работы ИК - Фурье спектрометра и газоана- [c.73]

    Ниже представлен список ряда веществ и пределы обнаружения (Стт) концентраций этих веществ (мг/мЗ) в газовой фазе методом ИК -Фурье спектроскопии в кювете длиной десять метров. Величина Стт определялась, исходя из следующей зависимости Ст1п = (l-P)N/0.37 а Ь, [c.74]

    Сравнение метода охлаждаемых ловушек (рис. 15, а) с методом растворителей (рис. 15, б) и методом газовых кювет (рис. 15, в) ясно показывает, что при прямой комбинации газо хроматографического разделения с методом подготовки проб для инфракрасной спектроскопии получают на 30—40% лучшие выходы и лучшую воспроизводимость результатов (Экниг, Кригсман и Ротцше, 1964). При применении растворителей или газовых кювет экономят соответственно и вещество и время. [c.260]

    Для идентификации веществ, которые при комнатной температуре обладают достаточно высоким давлением пара, целесообразно использовать газовые кюветы. Вещества с более высокой температурой кипения исследуют в виде раствора в одном или нескольких растворителях, чтобы получить полный спектр. Выбор растворителя (например, между СС14 и СЗа) проводят с точки зрения требований спектроскопии (Брюгель, 1962). [c.261]

    Для ЯМР-спектроскопии доступен СВзСК, который дает лишь очень слабые спектры для остаточного протонированного вещества. Обычный ацетонитрил является подходящим растворителем для ЭПР-спектроскопии, так как в этом растворителе ион-радикалы более стабильны, чем в воде кроме того, благодаря более низкому значению диэлектрической постоянной этого растворителя конструирование соответствующей кюветы и работа с ней проще, чем в случае водных растворов. При газовом хроматографическом анализе реакционных смесей ацетонитрил может быть причиной многих трудностей. В силу своей полярности ацетонитрил дает трудные остатки ( хвосты ) на многих типах хроматографических колонок. При использовании колонок, предназначенных для полярных соединений, возникновение таких хвостов не является проблемой, однако растворитель уносится вместе с соединениями среднего молекулярного веса. [c.5]

    Инфракрасная — ИК-спектроскопия. Спектры поглощения в инфракрасной области соответствуют колебаниям различных функциональных групп и связей, составляющих молекулу. К сожалению, особенности поглощения света в этом участке спектра таковы, что существенно осложняют количественную интерпрета-цию в соответствии с законом Ламберта — Бера. Инфракрасные спектры редко используют для количественного анализа. Основная сфера применения инфракрасной спектроскопии — это установление структуры индивиду-альных органических соединений, обнаружение в сложных смесях органических соединений тех или иных индивидуальных веществ или специфических функциональных групп. Благодаря тому, что ИК-спектр представляет собой набор большого числа узких линий, положение и интенсивность которых строго индивидуальны для каждого соединения, он является визитной карточкой органического соединения. Совпадение ИК-спектров в настоящее время считается одним из наиболее убедительных доказательств идентичности веществ. Для записи ИК-спектров обычно применяют кюветы из поваренной соли ЫаС1, прозрачной в этой области. Спектр записывают в координатах пропускание (поглощение), % — частота (или длина волны). Частоту чаще всего выражают в см , длину волны — в микронах или миллимикронах. На рис. 18 в качестве примера приведены ИК-спектры л- и л -ксилолов. [c.133]

    ВНУТРИКОМПЛЕКСНЫЕ СОЕДИНЕНИЯ см Хелаты. ВНУТРИРЕЗОНАТОРНАЯ ЛАЗЕРНАЯ СПЕКТРОСКОПИЯ вид лазерной спектроскопии, в к-рой исследуемое в-во в любом агрегатном состоянии помещают между зеркалами резонатора лазера на пути лазерного излучения, как показано на рисунке. Лазерное излучение, отражаясь от зеркал резонатора, многократно проходит через образец. При этом потери энергии излучения внутри резонатора вследствие рассеяния на зеркалах, отражения на окош1(ах кювет (в случае жидкостей или газов), дифракщш и др. причин компенсируются благодаря усилению излучения активной средой лазера. [c.393]

    Интенсивность полосы поглощения молекулы определяется вероятностью соответствующего электронного (или колебательного) перехода. Для характеристики интенсивности полосы служит молярный коэф. поглощения 6 (см. Абсорбционная спектроскопия), определяемый, согласно закону Бугера-Ламберта-Бера, как е = А1С1, где А = = — Ig Г= — lg(///o), Г-пропускание, и / -интенсивности соотв. падающего и прошедшего через в-во излучения, С-молярная концентрация в-ва, поглощающего излучение, /-толщина поглощающего слоя (кюветы), в см. Обычно е<10 , в ИК области е<210 (л/моль см). Закон Бугера-Ламберта-Бера лежит в основе количеств, анализа по спектрам поглощения. [c.397]


Смотреть страницы где упоминается термин спектроскопия кюветы: [c.535]    [c.36]    [c.130]    [c.282]    [c.417]    [c.122]    [c.219]    [c.78]    [c.44]    [c.261]    [c.347]    [c.521]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.243 , c.244 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.243 , c.244 ]




ПОИСК





Смотрите так же термины и статьи:

Инфракрасная спектроскопия кюветы для дейтерирования

Комбинационного рассеяния спектроскопия кюветы

Кювета и держатели образца для исследований методом ИК-спектроскопии

Ультрафиолетовая и видимая спектроскопия кюветы



© 2025 chem21.info Реклама на сайте