Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магний, коррозия в газах при

    Кислотная обработка применяется главным образом в песчаных породах с карбонатными прослойками, а также в тех случаях, когда частицы песка связаны между собой карбонатами кальция или магния. Кислотный раствор разлагает карбонаты, получаются углекислые, хорошо растворимые в воде соли кальция и магния и углекислый газ. Это приводит к расширению пор в пласте вокруг скважины, увеличению проницаемости, увеличению и улучшению поступления нефти в скважину. Закачка кислотного раствора производится по насосно-компрессорным трубам, а удаление — по кольцевому пространству. После пропускания кислотного раствора производится промывка скважины водой и нефтью. Для того чтобы предохранить трубы и другое оборудование от коррозии, в кислотный раствор добавляют специальные вещества — ингибиторы, которые препятствуют реакциям взаимодействия кислоты с металлом. [c.128]


    В тех случаях, когда коррозия сопровождается обильным выделением газа, можно определить степень коррозии по объему этого газа, собираемого в бюретки. Этот способ применяется, например, при испытании на коррозию магния в морской воде, нержавеющей стали в смесях кислот при повышенных температурах и т. д. [c.281]

    При работе котельного агрегата происходит накопление солей в котловой воде вследствие ее упаривания и притока солей с добавочной водой. Некарбонатные соли кальция и магния, образующие накипь, а также газы О2 и СО2, вызывающие коррозию, являются наиболее вредными примесями. [c.131]

    Коррозионная активность воды зависит от содержания растворенных солей, газов, механических примесей и от температуры. Например, скорость коррозии углеродистой стали в водопроводной воде, насыщенной СОг. достигает 8.4 г/(л<2. при нормальной температуре при насыщении воды кислородом скорость коррозии углеродистых сталей сначала возрастает. а затем снижается. При наличии в воде незначительных количеств хлор-иона возможна точечная коррозия сталей. Коррозионную стойкость магния в воде и водяном паре можно повысить, обрабатывая магний фтором или фтористым водородом. При этом образуется защитная пленка из М Рз. [c.816]

    Химические соединения. В почвах могут содержаться- минеральные соли (хлориды, сульфаты, карбонаты, нитраты натрия, калия, кальция, магния), органические кислоты (образуются при разложении органических веществ), газы (воздух, сероводород, углекислый газ). В зависимости от количества и соотношения химических соединений коррозия может протекать по-разному. [c.71]

    Как видно из рис. 1, скорость коррозии с повышением температуры увеличивается, однако, как и в чистом фтористом водороде, коррозия уменьшается с увеличением содержания магния в сплаве. При сопоставлении данных табл. 1 и рис. 1 можно отметить, что в смеси газов — скорость коррозии алюминия при соответствующих температурах примерно на порядок меньше, чем в чистом фтористом водороде. При 300° С алюминиевомагниевые сплавы различаются по коррозионной стойкости лишь в первые часы контакта со средой при продолжительности испытания свыше 20 ч различие [c.188]

    При изучении химических факторов коррозии бетона следует рассматривать как химический и минералогический составы бетона, его капиллярно-пористую структуру, так и состав агрессивной среды, в которой, как это следует из опыта работы бетонных сооружений, большую роль играют ионы магния, натрия, алюминия, аммония, меди, железа,, водорода, гидроксила, сульфатные, карбонатные и бикарбонатные, хлористые анионы. Также опасны все виды кислых газов — углекислый, сернистый, сероводород. Определенную роль играют также и органические соединения. Рассмотрим некоторые виды коррозии. [c.371]


    Ларсон [Л. 69] определял величину достижимого перегрева воды при ее контакте с различного рода металлами, при этом контактирующая поверхность имела форму шара диаметром 3,18 мм. Эти шарики не были греющими поверхностями, они нагревались за счет тепла, получаемого от воды, сама же вода подогревалась за счет излучения электрических Нагревателей. При атмосферном давлении достигалась температура 116°С при наличии металлических стимуляторов кипения, а в стеклянной трубе без каких-либо дополнительных устройств была получена температура жидкости 142° С. В случае поверхностей, обычно смачиваемых водой ( <90°), величина ее перегрева равна указанным выше значениям. На некоторых поверхностях, таких как алюминий, цинк, магний и т. д., образование пузырей происходит при температуре поверхности, значительно меньшей 100° С. Это явление связано частично с адсорбцией газа на поверхности этих металлов, а возможно, и с наличием химической реакции металла с водой, в результате которой происходит выделение газа, что в свою очередь ведет к образованию пузырей при пониженной температуре. Очевидно следующее вещества, химически инертные или обладающие хорошей сопротивляемостью коррозии, такие, как стекло, кремний и даже нержавеющая сталь, дают большую величину перегрева. [c.225]

    НДА защищает от коррозии сталь, алюминий и его сплавы, никель, хром, кобальт, стальные фосфатированные и оксидированные изделия. На меди и ее сплавах при значительном содержании в воздухе сернистого газа этот ингибитор образует темную пленку. Чтобы избежать этого, при хранении медных изделий в атмосфере рекомендуется добавлять в НДА карбонат аммония. НДА не дает достаточно надежной защиты чугуна и не защищает такие металлы, как цинк, кадмий, серебро, магний и его сплавы. Ингибитор разрушает нитролаки, хлоркаучуки, но безвреден для глифталевых и пентафталевых эмалей, натуральной резины, пластмасс. [c.151]

    Аммиак безопасен для магния и его сплавов, азотистые соединения типа нитрата и нитрита калия, нитрозных газов, напротив, вызывают коррозию. [c.549]

    Следует заметить, что если содержание натрия может быть легко понижено путем промывки мазута водой и паром, ванадий до настояш его времени практически не поддается удалению ни одним из сколько-нибудь экономически приемлемых методов. В связи с этим ведутся работы по изысканию присадок к мазуту, способных предотвратить или уменьшить ванадиевую коррозию. Наибольшие успехи в этой области достигнуты применением маслорастворимых магниевых солей, например нейтрализованного гидроокисью магния окисленного петролатума. Магний образует с ванадием высокоплавкие соединения, не оказывающие коррозионного воздействия на металлы и выносимые из проточной части турбины вместе с газами. [c.33]

    Газ подводится в газовые часы через патрубок 5 по внутренней трубке 6 он входит в цилиндрическую камеру 12. Отсюда газ поступает и заполняет ту из камер 4, соединительное отверстие которой находится под водой. Своим давлением на стенки камеры газ заставляет барабан 1 повернуться по часовой стрелке, вследствие чего из-под воды выходит второе отверстие камеры, которое соединяет ее с пространством между вращающимся барабаном и внешним кожухом. Через это отверстие газ по внешней трубке 7 выводится из газовых часов. Газ, последовательно заполняя все четыре камеры, заставляет барабан непрерывно совершать вращательное движение. Вращение барабана передается движущимся по циферблату стрелкам, соединенным с осью барабана р помощи зубчатых колес. Через газовые часы при каждом обороте проходит определенный объем газа. Число оборотов барабана при помощи специального счетчика переводится в объемные величины (литры, кубические метры). В качестве жидкого наполнителя в газовых часах (мокрых газометрах) обычно применяется вода, к которой иногда прибавляют (для понижения температуры замерзания воды) глицерин, хлористый магний или другие вещества. Однако эти добавки к воде вредны, так как они ускоряют коррозию металла. Замена воды в газовых часах трансформаторным маслом или другими специальными маслами, хотя и устраняет явление коррозии, ио, вследствие своей вязкости, вызывает более сильную потерю давления газа, чем это имеет место при использовании воды. Пользуясь газовыми часами, следует систематически отмечать показания термометра и манометра для последующего приведения объема газа к 0° и 760 мм рт. ст. Газовые часы требуют аккуратного обращения с ними и тщательного ухода. Время от вре- [c.91]

    Присутствие серного ангидрида в газах, выделяющихся при горении, уменьшает эффективность окиси магния как ингибитора коррозии. При температурах выше 700° это явление не достигает значительных размеров, но при пониженных температурах становится очень серьезным. [c.66]

    Атмосферная коррозия (влажная или мокрая) даже таких электроотрицательных металлов, как магний, протекает с кислородной деполяризацией. Если в кислых растворах железо, цинк, алюминий при полном погружении корродируют с водородной деполяризацией, то при наличии на их поверхности тонкой пленки влаги, загрязненной кислыми соединениями городской атмосферы, они корродируют преимущественно с кислородной деполяризацией. По данным И. Л. Розенфельда и Т. И. Луко НИНОЙ, в атмосферных условиях катодным деполяризатором наряду с кислородом служит также сернистый газ (сернистая кислота НгЗОз). В отличие от коррозии при полном погружении [c.48]


    Определение коррозии по объему выделившегося при испытании газа применимо только в тех случаях, когда коррозия сопровождается обильным выделением газа. Газ собирают в бюретки и по объему его судят о степени коррозии. Этот метод применяется, например, при испытании на коррозию магния в морской воде, нержавеюш,ей стали в смесях кислот при повышенных температурах и т. д. [c.392]

    Наиболее эффективным способом предотвращения ванадиевой коррозии является введение в топливо присадок типа сульфонатов Си, Zn, Са,. Присадки превращают низкоплавкий VjOj и ванадилванадат натрия в высокоплавкие порошкообразные соединения типа ванадата магния Mg 3 (V204)2, которые выносятся из камеры сгорания с отработавшими газами. Интенсивность ванадиевой коррозии снижается в 2-10 раз при введении в топливо [c.176]

    Фосфоритная руда Каратау содержит до 20% карбонатов [1]. При переработке фосфоритов в суперфосфат расходуется дефицитная серная кислота, реагирующая с карбонатами образуется новый балласт — сульфат кальция. Кроме того, выделяющийся углекислый газ выбрасывает измельченную фосфоритную руду, что зачастую ведет к нарушению нормального хода производственных процессов. Путем флотации не всегда можно отделить ценную руду от балластных карбонатов. Обогащение фосфоритов нри помощи флотации лишь частично понижает содержание карбонатов [ ]. По данным Чепелевецкого и Бруцкус [ ], а также Позина [ ], флотационный концентрат различных фосфоритов содержит от 3.8 до 6.8% двуокиси углерода, что составляет 8.6—15.5% карбоната кальция. Не дали положительного эффекта и физические методы удаления карбонатов, например путем магнитной и электростатической сепарации. Опыты обжига руды с последующим отмучиванием гидроокисей кальция и магния также не привели к желательным результатам. На совещании по теории и практике флотационного обогащения в 1950 г. было отмечено, что наилучшие результаты получаются при химическом отделении карбонатов Р]. К такому же выводу пришли в США при обогащении некоторых шеелитовых и фосфоритных руд [ ]. Особенное значение приобретают химические методы, когда обогащаемый материал — шлам. Известно, что успешное применение флотации наряду с другими условиями требует определенного размера частиц, не выходящего за границы некоторого интервала. Шламы же из-за высокой дисперсности не поддаются флотации [ . ]. Между тем при измельчении фосфоритов 15—20% всей руды отходит в шлам. Казалось бы самый простой способ химического обогащения — удалять карбонаты, действуя на РУДУ разбавленными кислотами. Тем более, что карбонаты значительно лучше растворяются в разбавленных кислотах, чем основная порода большинства руд. Действительно, методы извлечения карбонатов, содержащихся в фосфоритных рудах, разбавленными серной, соляной, азотной, а также сернистой кислотой разработали Вольф-кович с сотрудниками, Ченелевецкий и Бруцкус, Логинова в НИУИФ, Черняк в Иркутском институте редких металлов [ . >]. Однако минеральные кислоты слишком дорогой продукт для химического обогащения фосфоритов, особенно если принять во внимание, что регенерация кислоты затруднена. Имеет значение также коррозия аппаратуры. [c.32]

    Газ подводится в газовые часы через патрубок 5 по внутренней трубке 6 он входит в цилиндрическую, камеру 12. Отсюда газ поступает и заполняет ту из камер 4, соединительное отверстие которой находится под водой. Своим давлением на стенки камеры газ заставляет барабае 1 повернуться по часовой стрелке, вследствие чего из-под воды выходит второе отверстие камеры, которое соединяет ее с пространством между вращающимся барабаном и внешним кожухом. Через это отверстие газ по внешней трубке 7 выводится из газовых часов. Газ, последовательно заполняя все четыре камеры, заставляет барабан непрерывно совершать вращательное движение. Вращение барабана передается движущимся по циферблату стрелкам, соединенным с осью барабана при помощи зубчатых колес. Через газовые часы при каждом обороте проходит определенный объем газа. Число оборотов барабана при помощи специального счетчика переводится в объемные величины (литры, кубические метры). В качестве жидкого наполнителя в газовых часах (мокрых газометрах) обычно применяется вода, к которой иногда прибавляют (для понижения температуры замерзания воды) глицерин, хлористый магний или другие вещества. Однако эти добавки к воде вредны, так как они ускоряют коррозию металла. Замена воды в газовых часах трансформаторным маслом или другими специальными маслами, хотя и устраняет явление коррозии, о, вследствие своей вязкости, вызывает более сильную потерю давления газа, чем это имеет место при использовании воды. Пользуясь газовыми часами, следует систематически отмечать показания термометра и. манометра для последующего приведения объема газа к 0° и 760 мм рт. ст. Газовые часы требуют аккуратного обращения с ними и тщательного ухода. Время от времени необходимо производить их проверку. Для этой цели впускной кран газовых часов присоединяют к калибрированному газометру, наполненному воздухом, а выпускной кран — к газометру, наполненному водой. Выпустив определенный объем воздуха в атмосферу и доведя большую стрелку газовых часов до нулевого положения, соединяют прибор с газометром, наполненным водой, к спускному крану которого подставляют сухую мерную колбу. Пропускают ток воздуха и, когда уровень воды в колбе точно дойдет до метки на шейке ее, отмечают показание газовых часов. Таким образом проверяют градуировку всей шкалы прибора. Следует помнить, что газовыми часами нельзя пользоваться в случае газов, реагирующих либо с материалом, из которого изготовлен барабан, либо с жидкостью, наполняющей его. В этих условиях для измерения больших объемов газа применяют стеклянные реометры. [c.91]

    В опытах Луза в жидком и газообразном аммиаке магний не подвергался заметной коррозии в течение 7,5 лет. В природном газе магний, по данным того же автора, не корродирует. Присутствие влаги приводит к слабой коррозии. Жидкий или газообразный фреон (ССЬРг) на магний не действует, но в присутствии воды металл под воздействием этого вещества корродирует. [c.306]

    Получение плавленого хлорида кальция йз маточного щелока хлоратного производства, содержащего в 4—5 раз больше СаСЬ, чем дистиллерная жидкость, является значительно более экономичным. Здесь, однано, идет более сильная коррозия вследствие примеси хлората. Процесс осуществляется аналогично получению хлористого магния из хлормагниевых щелоков (стр. 275), т.е. путем выпаривания в чугунных котлах, обогреваемых топочными газами. Иногда выпаривание ведут в стальных котлах, в стенках которых заделаны стальные змеевики по змеевикам циркулирует перегретая вода или другой теплоноситель. Выпаривание ведут до тех пор, пока температура кипения жидкости не поднимается до 165—175°. При этом концентрация щелока достигает 67—75% СаСЬ, после чего его чешуируют на холодильном барабане или сливают в тару, где он застывает в плав, состоящий из смеси СаСЬ 2НгО и СаСЬ 4Н20. [c.745]

    Карбид кальция получается сплавлением обожженной извести с антрацитом и коксом. К исходному сырью предъявляют жесткие требования в отношении содержания примесей, так как они ухудшают качество готового продукта, а в некоторых случаях присутствие примесей нарушает нормальный ход процесса получения карбида. Особенно вредна примесь фосфора, образующего фосфористый кальций СазРз, который при последующем разложении карбида водой дает ядовитый и в смеси с ацетиленом взрывоопасный газ — фосфористый водород РН3. Вредной примесью является также сера, которая образует сернистый кальций aS, а при разложении карбида водой — сероводород H2S последний при сжигании ацетилена сгорает с образованием сернистого газа SO2, вызывающего коррозию металлов. Примеси окислов магния и алюминия делают карбид кальция более тугоплавким. [c.602]

    Вода, поступающая с нефтью, обычно представляет собой соляной рассол с содержанием 1 — 10% ЫаС1. Кроме того, в ней могут присутствовать значительные количества солей кальция, магния, бария, сульфатов и других обычных компонентов морской воды. На pH этого рассола может оказывать влияние присутствие уксусной кислоты, двуокиси углерода и растворенных газов, и рассол обычно является слабокислым. Из-за перепада давления в скважинах из раствора выделяются газы, поэтому pH его в устье скважины может быть значительно выше, чем в глубине ее. По данным работы [3], эта разность достигает 2,5. Следовательно, измерение pH в устье скважины не дает прямого указания на степень коррозии в глубине. [c.189]

    Вообще-то алюминий химически весьма активен, но это качество подавляется сплошной броней в виде окисной пленки, в которую металл мгновенно облачается на воздухе. Пленка толщиной всего 0,2 мкм, но она плотна, непориста и, главное, накрепко сцеплена с металлом, так как нижние слои ее повторяют строение кристаллической решетки алюминия. Вот почему так успешно защищается высокочистый металл от атакующих химических агентов — множества кислот, органических и неорганических, щелочей, морской воды, воздуха с его загрязнениями. Картина резко меняется от присутствия примесей в алюминии, особенно если это медь, ртуть, железо, магний. В местах контакта металла с примесями возникают гальванические микропары, они образуют газы, взрыхляющие окисную пленку. Появляется сетка микротрещин, где вершит свое черное дело коррозия. И чем больше примесей, тем слабее сцепление пленки с алюминием, тем скорей развивается коррозия. [c.125]

    Различают коррозию химическую и электрохимическую [38]. Под химической коррозией понимают непосредственное взаимодействие металлов со средой (топливами, маслами, смазками, продуктами их окисления и т. п.), не сопровождающееся возникновением в металле электрического тока и электрохимических процессов. Применительно к химической коррозии говорят о коррозионных или противокоррозионных свойствах нефтепродуктов. Наиболее подвержены химической коррозии цветные металлы — медь, свинец, магний, всевозможные сплавы этих металлов и их окислы. К коррозионно-агрессивным по отношению к этим металлам веществам, часто содержащимся в смазках, относятся свободные жирные кислоты, серо-, фосфор- и хлорсодержащие продукты (противоизиосные и противозадирные присадки), амины и т. п. На практике чисто химическая коррозия встречается редко, исключение составляет коррозия в вакууме, в инертном газе и т. п. Как правило, химическая коррозия сопровождается электрохимическим разрушением металла, связанным с работой микрогальвани-ческих пар, наличием на поверхности металла и в смазке воды, продуктов окисления и разрушения самой смазки. Применительно к электрохимической коррозии принято говорить о защитных свойствах нефтепродуктов. [c.127]

    Хлористый метил при обычной температуре и нормальном давлении представляет собой бесцветный газ с эфирным запахом и сладковатым вкусом. С воздухом и кислородом образует взрывоопасные смеси [нижний предел взрывоопасной концентрации смесей с кислородом 8 и верхний 65% (об.)]. В промышленности пользуются сжиженным хлористым метилом, он хорошр смешивается с основными органическими растворителями и слегка растворим в воде. В отсутствие воды жидкий СНзС1 стабилен и не вызывает коррозии, но в присутствии влаги медленно разлагается и становится коррозионно-активным по отношению к металлам, особенно к алюминию, цинку и магнию. Длительное пребывание в атмосфере с высоким содержанием паров хлористого метила вредно для человека. [c.324]

    Коррозионное дойстиие оказывают также содержащиеся и воде бикарбонаты кальция, магния и натрия, разлагающиеся при нагревании. Вы-дeJ[яющий я при этом углекислый газ, частично растворяющийся в воде, образует угольную кислоту, которая повышая концентрацию водородных ионов п воде создает благоприятные условия для коррозии металлов, особенно в присутствии других солей. [c.256]


Смотреть страницы где упоминается термин Магний, коррозия в газах при: [c.334]    [c.132]    [c.247]    [c.326]    [c.334]    [c.472]    [c.65]    [c.85]    [c.379]    [c.247]    [c.159]    [c.595]    [c.262]    [c.75]   
Коррозия металлов Книга 1,2 (1952) -- [ c.0 ]

Коррозия металлов Книга 2 (1952) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Магний, коррозия в газах при высокой температуре

Сплавы магния, коррозия в газах

Сплавы магния, коррозия в газах при высокой температуре



© 2025 chem21.info Реклама на сайте