Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Превращения аланина глицина

    Основная масса больщинства аминокислот проходит в реакциях обмена через стадии превращений в глутаминовую или аспарагиновую кислоты или аланин. Содержание амидов и этих трех аминокислот в белках, особенно в белках растений, обычно не менее 30%, а в некоторых белках, например в глиадине пшеницы, превышает 50% общего количества аминокислот. Кроме того, в процессах обмена эти три аминокислоты могут синтезироваться из других аминокислот. Глутаминовая кислота образуется из пролина, орнитина и гистидина, аланин— из триптофана, цистина, серина и т. д. Количество этих аминокислот, объединяемых системой дикарбоновых аминокислот, также составляет не менее 30% аминокислот, входящих в состав белковых молекул. Таким образом, не менее 60% аминокислот, содержащихся в молекуле белка, составляют глутаминовая и аспарагиновая кислоты, их амиды, аланин и аминокислоты, связанные с ними прямыми переходами в обмене веществ. Кроме того, аминогруппы других аминокислот, например валина, лейцина, изолейцина, глицина, в результате переаминирования могут переходить на кетоглутаровую кислоту и образовывать глутаминовую кислоту. Следовательно, доля азота, подвергающаяся обмену через эту систему, еще более увеличивается. Эти данные также показывают центральную роль дикарбоновых аминокислот в обмене веществ. [c.257]


    В чем заключается амфотерность аминокислот Напишите формулы аминокислот в виде биполярных ионов а) глицина б ) аланина в) а-аминоизомасляной кислоты. Для каждого соединения представьте его превращение в катион при избытке водородных ионов (в кислой среде) и в анион при избытке гидроксильных ионов (в щелочной среде). [c.79]

    Как явствует из схемы, приведенной на фиг. 24 и 25 (гл. 6), глутамат, аспартат, аланин и глицин, прежде чем подвергнуться окислению в цикле Кребса, должны быть превращены соответственно в а-кетоглутарат, оксалоацетат, пируват и глиоксилат. Это, по-видимому, будет иметь место всякий раз, когда деградация белков будет опережать их ресинтез. Подобным же образом углеродные скелеты некоторых других аминокислот (а также, конечно, жирных кислот) могут окисляться в цикле трикарбоновых кислот после их превращения в ацетат или ацетил-КоА. Углеродные атомы пирувата могут включаться в цикл через стадию ацетил-КоА, а также с помощью реакций (1) — (3)  [c.120]

    Количество данных, касающихся биосинтеза аминокислот, очень велико, но о ранних стадиях биосинтеза известно меньше, чем о более поздних. Современные представления о механизмах превращения газообразного азота в аммиак у растений изложены в специальной монографии [1]. Миллер [2] сделал очень интересную попытку подойти к решению проблемы первичного образования органических веществ на земле он показал образование аминокислот (глицин, саркозин, ОЬ-аланин, р-аланин, ОЬ-а-аминомасляная кислота и а-аминоизомасляная кислота), а также других соединений (молочная, муравьиная и уксусная кислоты) в системе, содержащей метан, аммиак, водород и воду. Эту смесь, близкую к предполагаемому составу земной атмосферы на ранних стадиях ее образования, подвергали в течение недели и дольше воздействию электрических разрядов. Было найдено, что аминокислоты образуются путем гидролиза нитрилов последние в свою очередь возникают в результате реакции между альдегидами и синильной кислотой, образующимися под действием электрических разрядов. Миллер высказал любопытное предположение о возможном синтезе первых живых организмов из аминокислот и других соединений, образовавшихся в результате взаимодействия между альдегидами, синильной кислотой и аммиаком в первичном океане. [c.307]

    При дезаминировании аспарагиновой кислоты, аланина и глутаминовой кислоты образуются а-кетокислоты, принадлежащие к числу промежуточных продуктов обмена углеводов. Введение per os этих аминокислот, а также валина [97, 98], серина [99, 100], глицина [99, 101], треонина [102], аргинина [103, 104],. гистидина [104—106] и изолейцина [104, 107] вызывает у голодающих животных увеличение содержания гликогена в печени. В определенных условиях пролин [104], цистеин [104] и метионин [108] также могут вызывать добавочное образование у леводов, тогда как в результате обмена тирозина (стр. 417), фенилаланина (стр. 425) и лейцина (стр. 359) образуютсл кетоновые тела. Недостаток этих экспериментальных приемов состоит в том, что получаемые результаты касаются обмена аминокислот в нефизиологических условиях не удивительно, что некоторые аминокислоты проявляют при одних условиях гликогене-тическое действие, а при других — кетогенное. Для изучения превращения аминокислот в процессах обмена веществ наиболее удобно вводить изотопную метку в углеродный остов аминокислоты и затем выяснить судьбу меченого углерода путем исследования продуктов обмена. Работы этого рода, относящиеся к отдельным аминокислотам, подробно рассмотрены в гл. IV. [c.181]


    Преимущественное образование глютаминовой кислоты и аланина из сахарозы наблюдали и другие авторы как в растительных, так и в животных тканях [19—21]. При этом интересно отметить, что в процессе фотосинтеза в 0 02 на ранних стадиях образуются главным образом глицин и серин [22]. Это дает основание предполагать, что синтез глицина, по-видимому, не связан с образованием и превращением сахаров в процессе фотосинтеза, в то время как синтез глютаминовой кислоты и аланина, как правило, тесно связан с расщеплением сахаров по циклу Кребса через пировиноградную и а-кетоглутаровую кислоты. [c.252]

    В анаэробных условиях основной реакцией превращения аминокислот является реакция Стикленда - сопряженное окисление и восстановление двух аминокислот одна из них играет роль окислителя, другая - восстановителя. В результате реакции Стикленда из аминокислот образуются жирные и кетокислоты и выделяется аммиак. Окисление одной молекулы аланина в клетках С/, sti klandii сопряжено с восстановлением двух молекул глицина. Аминокислоты аланин, лейцин, валин, фенилаланин, серии, гистидин, изолейцин, метионин, орнитин, цистеин, аспарагиновая и глутаминовая кислоты являются донорами водорода, а глицин, пролин и аргинин -акцепторами. [c.429]

    В целом сопряженные окислительно-восстановительные превращения аланина и глицина могут быть выражены следующим образом  [c.246]

    Микроорганизмы используют АТР и сильный восстановитель для превращения N2 в ЫН4 Затем соли аммония используют-ся высшими организмами для синтеза аминокислот, нуклеотидов и других молекул. Основными соединениями ( пунктами входа ), в составе которых N114 вводится в промежуточный метаболизм, являются глутамин, глутамат и карбамоилфосфат. Организм человека способен синтезировать лишь половину основного набора двадцати аминокислот. Эти аминокислоты называются заменимыми в отличие от незаменимых, которые обязательно должны поступать с пищей. Пути биосинтеза заменимых аминокислот очень просты. Глутамат-дегидрогеназа катализирует восстановительное аминирование а-оксоглутарата с образованием глутамата. Аланин и аспартат синтезируются путем трансаминирования пирувата и оксалоацетата соответственно. Глутамин синтезируется из N14 и глутамата, сходным образом образуется и аспарагин. Пролин синтезируется из глутамата. Серин, образующийся из 3-фосфоглицерата,- предшественник глицина и цистеина. Тирозин синтезируется путем гидроксилирования незаменимой аминокислоты фенилаланина. Пути биосинтеза незаменимых аминокислот гораздо сложнее, чем заменимых. Эти пути в большинстве своем регулируются путем ингибирования по типу обратной связи, когда решающая реакция аллостерически инги- [c.252]

    Количественно определены валин, лейцин, изолейцин, глицин, аланин, пролин после превращения нх в N-ацетилированные бу-таловые эфиры, НФ гидрированное растительное масло. [c.134]

    Полиаминокислоты. — Данный раздел посвящен главным образом синтетическим полипептидам, полученным полимеризацией производных отдельных аминокислот (гомополимеры) или в некоторых случаях двух или более компонентов. Эфиры глицина и аланина были полимеризованы, но в настоящее время предпочитают использовать в качестве мономеров N-кapбoк иaнгидpиды, известные также КЗ К ангидриды Лейяса IV. Лейхс (1906) лолучил соединения этого типа взаимодействием аминокислоты I с метиловым эфиром хлоругольной кислоты. При этом образуется Ы-карбметоксиаминокислота П, из которой после превращения в хлорангидрид III при перегонке в вакууме образуется Ы-карбоксиангидрид IV и элиминируется молекула хлористого метила  [c.711]

    Ниже приведена общая схема превращения углеродного скелета аланина, цистеина, глицина, треонина и серина в пируват. В состав пирувата включаются все атомы углерода глицина, аланина, цистеина и серина и только два атома углерода треонина. Далее пируват может превращаться в ацетил-СоА. [c.322]

    Эфиры аминокислот в виде свободных оснований нестабильны и даже при комнатной температуре легко превращаются к дике-топиперазины, причем скорость этого превращения зависит от структуры аминокислоты и характера алкильной группы эфира. Поэтому многие авторы исследовали возможность применения в хроматографическом анализе хлоргидратов различных эфиров аминокислот или некоторых их солей. Сароф с сотрудниками [29] изучали разделение хлоргидратов этиловых и бутиловых эфиров аминокислот при добавлении аммиака к потоку газа-носителя (N2). При этом на двухметровой колонке с полинеопентилгликоль-сукцинатом (22% на хромосорбе ) оказалось возможным осуществить лишь неполное разделение низкокипящих эфиров аланина, глицина, валина, изолейцина, лейцина и пролина, а также лизина и оксипролина. Степень образования амидов в зависимости от длины колонки, температуры и других параметров хроматографического разделения в данной работе не определялась. [c.261]


    Опубликованы данные, согласно которым превращение серина в глицин в экстрактах одного из видов lostridium происходит в присутствии дифосфопиридиннуклеотида, ионов марганца, пиридоксальфосфата, ортофосфата и нового фактора, обозначенного как кофермент С. Этот фактор отличается от упомянутых выще производных фолевой кислоты. Из С. ylindrosporum были выделены 5 групп птеридиновых соединений, обладающих активностью кофермента С оказалось, что некоторые из них содержат глутаминовую кислоту, глицин, серин и аланин [208, 209]. Имеются указания на то, что в обмене одноуглеродных соединений может участвовать витамин Е [215]. Так, например, при введении кроликам с недостаточностью витамина Е С -мура-вьиной кислоты последняя включалась в нуклеиновые кислоты и белки значительно более активно, чем у контрольных животных если вводили 1-С -глицин, то у животных с недостаточностью витамина Е включение изотопа было понижено. [c.329]

    Наиболее обстоятельно изучен процесс сопряженного сбраживания аланина и глицина, которые, как правило, поодиночке большинством клостридиев не используются. Первым этапом превращений аланина является его окислительное дезаминирование, приводящее к образованию соответствующей а-кетокислоты, в данном случае пирувата  [c.211]

    В процессе кратковременного фотосинтеза С из углекислого газа включается в несколько аминокислот глицин, серин, аланин и аспартат. При несколько более длительном фотосинтезе радиоактивный углерод обнаруживается еще в одной аминокислоте,—глута-мате. Однако есть все основания считать, что эта аминокислота образуется вне хлоропластов в результате постфотосинтетических превращений углерода, связанных с функционированием цикла Кребса. Тем не менее, глутамату придается большое значение в реакциях фотосинтетического образования аминокислот. Дело в том, что глутамат может выступать в роли донора аминогрупп в реакциях переаминирования, приводящих к образованию аспартата, серина, глицина и, быть может, аланина. Это доказывают опыты (Бассем, Кирк, 1963), в которых использовались одновременно радиоактивные изотопы углерода и стабильный изотоп азота Результаты этих опытов представлены на фиг. 114 и фиг. 115. Оказалось что включается быстрее в состав глутамата, чем в аспартат и аланин, а С — наоборот — позже в глутамат. Характер изменения во времени содержания Н в этих аминокислотах позволяет сделать вывод [c.243]

    В целом сопряженные окислительно-восстановительные превращения аланина и глицина могут быть выражены следующим образом ал анинЧ- ЗНгО ацетат -Ь NH3 -f СО2 + 4Н  [c.211]

    Следует обратить особое внимание на достаточно высокие скорости фотохимических реакций, о чем свидетельствуют поражающие воображение опыты, в которых за очень незначительный по сравнению с геологическим промежуток времени (часы, сутки) удается получить из исходного строительного материала первобытной Земли такие завершенные продукты синтеза, как аминокислоты. Коротко остановимся на этих данных. При облучении коротковолновым ультрафиолетом (116—185 нм) компонентов первобытной атмосферы в бескислородной среде в виде смеси газов, содержащих аммиак, метан и пары воды, ряд авторов отмечали образование аминокислот. Так, Грот и Вейсенгоф, А. Н. Теренин зарегистрировали фотохимическое образование глицина, аланина Н. Я. Додонова и А. И. Сидорова — валина, лейцина, норлейцина. Остаются до сих пор не выясненными механизмы этих превращений и их квантовые выходы. Тем не менее эффективность подобных превращений достаточно высока. Так, в опытах Поннамперума и Флореса за 48 ч около 0,5% метана превращалось в органические соединения. [c.357]

    Было также установлено, что размеры кристаллической решетки полимеров триокситриазиновых колец таковы, что она может содержать только глицин и аланин, для боковых же цепей других аминокислот места нет [75]. Наконец, было установлено, что предположение о наличии в белках триокситриазиновых колец неприемлемо с энергетической точки зрения [76]. При исследовании большого числа соединений, содержащих группы —СО ЫН—, было показано также, что превращение этих групп в группы —С(ОН)=Н— связано с образованием ароматических колец [77]. Освобождающаяся при образовании этих колец энергия используется для образования энолизованной лактимной связи [77]. [c.132]

    Природа пептидов, выделяющихся при превращении яичного альбумина в плакальбумин, была изучена Оттесоном и Вилли [151 г]. Применив хроматографическое разделение на колонке с крахмалом, эти исследователи обнаружили три пептида, обозначенные ими как А, В и С. Пептид А оказался гексапептидом, в состав которого входят аминокислоты аланин, валин, глицин и аспарагиновая кислота в соотношении 3 1 1 1. Пептид В представляет собой тетрапептид, состоящий из тех же аминокислот [c.333]

    Исследовано каталитическое превращение смеси СО, Н2, NH3. При взаимодействии указанной смеси в области температур 200— 700° в присутствии никеля, AI2O3 или Глины обнаружены аминокислоты в сложной смеси продуктов реакции, состоящей из глицина, o -аланина, р-аланина, саркозина, аспарагиновой кислоты, глутаминовой кислоты, арг-инина, гистидина, лизина, орнитина и др. [120]. Саркозин присутствует также в продуктах конденсации гли- цина с формальдегидом [107]. Одиако этот метод не нашел практического применения. [c.23]

    Фибриллярный белок коллаген — самый распространенный белок в мире животных в организме человека с массой тела 70 кг содержится от 12 до 15 кг белков, и половина этого количества приходится на коллаген. Молекула коллагена (тропоколлагена) построена из трех пептидных цепей, каждая из которых содержит около 1000 аминокислотных остатков. Необычен аминокислотный состав коллагена каждая третья аминокислота — это глицин, 20 % составляют остатки пролина и гидроксипролина, 10 % — аланина, остальные 40 % представлены всеми другими аминокислотами. Коллаген — единственный белок, в котором содержится гидроксипролин. Эта аминокислота получается путем гидроксилирования части остатков пролина уже после образования пептидных цепей. Гидроксилиру-ется также некоторая часть остатков лизина с превращением в гидроксилизин. [c.47]

    Хрупкость изолированных пероксисом и использование для их очистки изопикиического центрифугирования при высокой концентрации осмотически активных молекул сахарозы затрудняет их выделение в интактном и пригодном для метаболических исследований виде. Есть даииые о том, что изолированные пероксисомы способны метаболизировать С-гликолат до глиоксилата и глицииа. Когда донорами аминогруппы служат глутамат, аланин или серин, главным продуктом метаболических превращений гликолата становится глицин. [c.421]

    Взаимодействие атомарного углерода с аммиаком. Одним из перспективных способов получения аминокислот является конденсация атомарного углерода, получаемого с помощью угольной дуги,. с амм Иаком. Обыкновенно реакцию проводят при высоком вакууме реагенты оседают совместно с атомарным углеродом на стенках реактора при — 196°С [97, 98, 104]. После завершения реакции температуру смеси под вакуумом доводят до комнатной. Твердый остаток гидролизуют в присутствии соляной кислоты при повышенных температурах. Получают смесь глицина, аланина, р-аланина, саркозина и аспарагиновой кислоты. При наличии воды в реакционной смеси образуется серии. Реакция протекает с преимущественным образованием глицина. Имеющиеся превращения при образовании глицина отражает схема [c.22]


Смотреть страницы где упоминается термин Превращения аланина глицина: [c.261]    [c.641]    [c.422]    [c.92]    [c.577]    [c.506]    [c.364]    [c.753]    [c.321]   
Биохимия Издание 2 (1962) -- [ c.365 ]




ПОИСК





Смотрите так же термины и статьи:

Аланин

Глицин

Глицин превращение

Глициния



© 2024 chem21.info Реклама на сайте