Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глицин превращение

    В чем заключается амфотерность аминокислот Напишите формулы аминокислот в виде биполярных ионов а) глицина б ) аланина в) а-аминоизомасляной кислоты. Для каждого соединения представьте его превращение в катион при избытке водородных ионов (в кислой среде) и в анион при избытке гидроксильных ионов (в щелочной среде). [c.79]


    Следует отметить, что в выяснение биологической роли витамина В и пиридоксальфосфата в азотистом обмене существенный вклад внесли А.Е. Браунштейн, С.Р. Мардашев, Э. Снелл, Д. Мецлер, А. Майстер и др. Известно более 20 пиридоксалевых ферментов, катализирующих ключевые реакции азотистого метаболизма во всех живых организмах. Так доказано, что пиридоксальфосфат является простетической группой аминотрансфераз, катализирующих обратимый перенос аминогруппы (КН,-группы) от аминокислот на а-кетокислоту, и декарбоксилаз аминокислот, осуществляющих необратимое отщепление СО от карбоксильной группы аминокислот с образованием биогенных аминов. Установлена коферментная роль пиридоксальфосфата в ферментативных реакциях неокислительного дезаминирования серина и треонина, окисления триптофана, кинуренина, превращения серосодержащих аминокислот, взаимопревращения серина и глицина (см. главу 12), а также в синтезе б-аминолевулиновой кислоты, являющейся предшественником молекулы гема гемоглобина, и др. [c.227]

    Если образование глицина из глиоксилата происходит путем переаминирования, то обратное превращение избытка глицина в глиоксилат, может осуществляться с помощью оксидазы аминокислот (табл. 8-4). [c.120]

    Вернемся еще раз к свойствам аминогруппы глицина она проявляет более сильные основные свойства (более высокое значение рКа), чем обычный органический амин. Можно ожидать, что единичный отрицательный заряд карбоксильной группы приведет к повышению электронной плотности на аминогруппе и что электростатическое притяжение (эффект ноля) между аммоний-катионом и карбоксилат-апионом затруднит отрыв протона от аммонийной группы. Это действительно так, и оба эффекта играют важную роль. Тем не менее рКа аминогруппы глицина равен 9,60, тогда как у метиламина 10,64 (табл. 2.1). Это происходит потому, что наиболее важным, или определяющим, эффектом является оттягивание электронов карбоксильной (карбонильной) группой. Так, если нейтрализовать весь заряд карбоксильной группы путем превращения ее в амид, то рКа аминогруппы глициламида равен 8,0, а для глицилглицина 8,13. При этом не возможны ни повышение электронной плотности карбоксилат-ани-оном, ни эффект поля (электростатическое влияние) единственным эффектом остается оттягивание электронов амидной карбонильной группой. Отметим, что этерификация аспарагиновой и глутаминовой кислот аналогичным образом влияет на свойства полученных соединений (табл. 2.1). Аминогруппы диэтиловых эфиров обладают кислыми свойствами. [c.40]


    Другая катаболическая реакция треонина [уравнение (14-29), стадия б]—это расщепление на глицин и ацетальдегид, катализируемое серин-оксиметилтрансферазой [уравнение (8-19)]. Третьим и количественно более существенным путем является дегидрирование [уравнение (14-29), стадия в] и декарбоксилирование с образованием аминоаце-тона [уравнение (14-29), стадия г]. Аминоацетон выводится с мочой, но он может также быть окислен [уравнение (14-29), стадия д] в ме-тилглиоксаль, который может подвергаться превращению в D-лактат под действием глиоксилазы (гл. 7, разд. Л). Аминоацетон служит также источником 1-амино-2-пропанола при биосинтезе витамина Bis (стадия е, дополнение 8-Л). Было постулировано, что метилглиоксаль является природным регулятором роста, препятствующим чрезмерной пролиферации клеток у животных [63 ]. [c.114]

    Обнаружено, что в реакционной массе наряду с основным продуктом — иминодиуксусной кислотой — присутствуют исходная нитрилтриуксусная кислота и глицин (3—5%). Среди газообразных продуктов содержится оксид углерода (13,8%), диоксид углерода (38%), водород (40%), следы оксидов азота, метана, формальдегид. Наличие в продуктах реакции оксидов азота и глицина свидетельствует о протекании, хотя и в незначительной степени, более глубокой деструкции нитрилтриуксусной кислоты. Наличие оксида углерода и метана можно объяснить дальнейшими превращениями образующегося в процессе реакции формальдегида. [c.55]

    Холестерин в организме превращается в ряд веществ, в том числе в стероидные гормоны. Однако в количественном отношении наиболее важными продуктами превращения холестерина являются желчные кислоты (рис. 12-16). Эти мощные эмульгирующие агенты поступают из печени в желчный пузырь и оттуда в двенадцатиперстную кишку. В дальнейшем значительная часть выделенных желчных кислот вновь всасывается в кишечнике, возвращается в печень и используется повторно. Образование желчных кислот включает удаление двойной связи в холестерине, инверсию у С-3 с образованием За-ОН-группы, последующее гидроксилирование и р-окисление боковой цепи. Далее желчные кислоты (или их СоА-производные) конъюгируют с глицином или таурином, образуя соли желчных кислот — гликохолевую или таурохолевую кислоты (рис. 12-16). [c.584]

    Три важных фактора — индуктивный эффект, эффект поля и резонансный эффект — могут сильно влиять на поведение органических кислот и оснований, включая и биологически важные а-аминокислоты. В водном растворе, обычной среде нротекания биологических реакций, эти эффекты обусловливают большое разнообразие свойств, так что процессы диссоциации могут происходить во всем диапазоне pH. Это вал<но, потому что белки, построенные из аминокислот, в зависимости от своего аминокислотного состава могут принимать участие в кислотно-основных превращениях. Действительно, в упрощенном виде диссоциацию аминокислот можно рассматривать как миниатюрную модель диссоциации белка. В биохимических реакциях важные функции выполняют белки, и аналогия с аминокислотами может слу кить основой для понимания процессов передачи протонов. Однако такая модель слишком упрощена. Она не учитывает кооперативные взаимодействия. Например, как поведет себя лизин при диссоциации под действием линейно-расположенных положительно заряженных аминокислотных остатков, входящих в состав белка Далее, каким образом близко расположенная гидрофобная область белковой молекулы (т. е. область с более Ш13-кой диэлектрической проницаемостью) влияет на ее диссоциацию в данном химическом процессе То, что в этом случае можно ожидать значительных изменений, видно из поведения глицина при диссоциации в среде с низкой диэлектрической проницаемостью например, в 95%-ном этаноле (рКа карбоксильной группы глицина равен 3,8, а аминогруппы 10,0). Можно было бы подумать, что в этом случае но кислотности глицин близок к уксусной кислоте, но это не так, поскольку для последней р/( равен 7,1. [c.42]

    Серии служит также основным источником глицина (стадия г) и одноуглеродных остатков, используемых для синтеза метильных и фор-мильных групп. Основной путь образования глицина из серина [70] — это реакция, катализируемая сериноксиметилазой (стадия г, рис. 4-12) в меньшей степени превращение идет через образование фосфатидил-серина, фосфатидилхолина и свободного холина [уравнение (14-30)]. Вследствие ограниченной способности нашего организма к синтезу метильных групп холин во многих случаях должен обязательно поступать в организм с пищей, в связи с чем его причисляют к витаминам. Однако в присутствии достаточных количеств фолиевой кислоты и витамина В12 организм уже не испытывает абсолютной потребности в холине. Холин может быть использован непосредственно для превращения обратно в фосфатидилхолин (рис. 12-8), но его избыток может подвергаться дегидрированию в бетаин [уравнение (14-30)]. Последнее соединение, содержащее четвертичный атом азота, является одним из немногих метаболитов, которые, подобно метионину, могут поставлять метильные [c.118]


    Подобраны условия выращивания кристаллов трех полиморфных модификаций глицина, различающихся системами межмолекулярных водородных связей и характером упаковки цвиттер-ионов в кристаллической структуре (спиральные цепи, одинарные складчатые слои, центросимметричные сдвоенные складчатые слои). Уточнены кристаллические структуры полученных модификаций. Исследовано полиморфное превращение Р-модификации в а-модификацию методом монокристальной рентгеновской дифракции, показано, что структура исходного кристалла нарушается в ходе фазового перехода не полностью, выявлены ориентационные соответствия между кристаллографическими осями двух фаз. Предложена модель превращения, основанная на учете роли водородных связей. [c.41]

    Стереохимия природных а-аминокислот характеризуется тем, что все они, кроме глицина, имеют асимметрический атом углерода (атом, связанный и с амино-, и с карбоксильной группами), конфигурация которого может быть отождествлена с конфигурацией Ь-глицеринового альдегида путём цепи химических превращений при этом эти превращения либо не должны затрагивать хиральный центр, либо реакции должны протекать строго стереоспецифично. Следовательно, все природные а-аминокислоты являются Ь-энантиомерами. [c.38]

    Гидролиз. В присутствии щелочи дикетопиперазины легко гидролизуются до дипептидов. И действительно, это превращение часто применяется для синтеза дипептидов. Хотя ангидрид глицина расщепляется 1 н. раствором едкого натра при комнатной температуре в течение 15—20 мин., высшие гомологи более устойчивы, и легкость гидролиза уменьшается с возрастанием молекулярного веса [291]. Влияние заместителей на скорость гидролиза иллюстрируется относительными количествами двух возможных дипептидов, получае- [c.358]

    В целом сопряженные окислительно-восстановительные превращения аланина и глицина могут быть выражены следующим образом  [c.246]

    Карбобензокси-глицин, гидразингидрат Глицин и другие продукты превращения Р(1 (порошок) [873] [c.355]

    Особое значение это превращение имеет в ряду а-аминокислот, поскольку в этом случае легко образуются лактамы, известные как гидантоины. С глицином, например, получается сам гидантоин реакцию можно представить- [c.360]

    По второму из указанных направлений в качестве объекта были выбраны парацетамол, глицин и пироксикам. Исследованы условия кристаллизации различных полиморфных модификаций, их взаимных твердофазных превращений, уточнены кристаллические структуры, исследовано влияние гидростатического давления на структуры, а также изучена механическая активация, как чистых образцов, так и молекулярных кристаллов в смеси с различными органическими и неорганическими подложками. [c.39]

    Полученные в ходе проекта результаты являются новыми. Впервые изучена анизотропия деформации двух полиморфных модификаций [Со(ЫНз)5Ы02]12 и предложена модель, объясняющая различия в их поведении. Новыми являются данные об изменениях молекулярной и кристаллической структуры парацетамола под действием гидростатического давления, а также сравнительное исследование деформации различных полиморфных модификаций парацетамола под действием давления. На высоком экспериментальном уровне проведены исследования фазовых превращений глицина. [c.43]

    Дребущак Т. H., Болдырева Е. В., Сереткин Ю. В., Шутова Е. С. Сравнительное рентгеноструктурное исследование а- и - полиморфных модификаций глицина и превращения -модификации в а-модификацию. Журнал структурной химии (в печати). [c.44]

    Положительный заряд на азоте отталкивает протон от карбоксиль-(ной группы, вследствие чего соединение является гораздо более сильной кислотой, чем уксусная кислота (р/С = 4,76). Вследствие этого нейтральный биполярный ион б образуется при более низком значении pH, чем то, которое требуется для превращения уксусной кислоты в ацетат-ион. Электростатический эффект должен противодействовать потере второго протона при ионизации биполярного иона с образованием аниона в. Тот факт, что значение р/Сг у глицина меньше, чем у метиламина ( р/С = 10,6), может быть приписан влиянию ооседней карбоксильной группы. Этиловый эфир глицина Нг Ы— СНг—СООС2Н5, в котором нет электростатического эффекта, является гораздо более слабым основанием (рЛ = 7,7). [c.647]

    Полиаминокислоты. — Данный раздел посвящен главным образом синтетическим полипептидам, полученным полимеризацией производных отдельных аминокислот (гомополимеры) или в некоторых случаях двух или более компонентов. Эфиры глицина и аланина были полимеризованы, но в настоящее время предпочитают использовать в качестве мономеров N-кapбoк иaнгидpиды, известные также КЗ К ангидриды Лейяса IV. Лейхс (1906) лолучил соединения этого типа взаимодействием аминокислоты I с метиловым эфиром хлоругольной кислоты. При этом образуется Ы-карбметоксиаминокислота П, из которой после превращения в хлорангидрид III при перегонке в вакууме образуется Ы-карбоксиангидрид IV и элиминируется молекула хлористого метила  [c.711]

    Все эти процессы еще более свойственны пептидам, чем самим аминокислотам. Такое поведение аминокислот во время гидролиза имеет исключительное значение, поскольку в результате распада наблюдается не только разложение аминокислоты, но и превращение ее в другую. Если при этом образуется аминокислота, обычно не обнаруживаемая в белках (например, орнитин или лантионин), то легко устаиовить, что она является артефактом. Более серьезным недостатком метода является образование аминокислот, входящих в состав белка, например, глицина, так как о<но может привести к ошибочным заключениям. [c.478]

    Во время переноса одноуглеродных остатков в структуре кофермента - те-трагидрофолиевой кислоты (ТГФ) - происходит образование мостика между атомом азота в пятом положении птеридина и азотом иара-аминобензойной кислоты (на рис. 14 не показан) за счет переносимого фрагмента. Последний затем включается в синтезирующееся пуриновое кольцо или в виде группы СН3 входит в состав тимина при синтезе пиримидиновых оснований. Кроме того, ТГФ участвует в реакциях биосинтеза аминокислот, а именно в превращении серина в глицин и в переносе метильной группы при биосинтезе метионина. [c.39]

    Производное птеридина — фолиевая кислота (51), природный фактор роста, который необходим для жизнедеятельности всех высших животных. Фолиевая кислота принимает участие в биологических превращениях серина в глицин и гомоцистеина в метионин. Синтетическая фолиевая кислота, отличающаяся от природной отсутствием двух атомов азота, применяется в качестве сильн шего противоопухолевого средства [73]. Рибофлавин (витамин Вг) (52), производное бензо[ ]птеридина, встречается в фосфорилированной форме в проросшем зерне, молоке и яйцах. Феназиновая циклическая система входит в состав некоторых синтетических красителей и природных пигментов [например, голубой бактериальный пигмент пиоциании (53)]. Среди производных хиназолина встречаются соединения, примшяемые в качестве лекарственных препаратов иапример, седативное средство метакуалон (54) и празозии (55), применяемый для лечения гипертонической болезни. [c.327]

    Второй путь превращения арахидоновой кислоты—липоксигеназ-ный путь (рис. 8.4) — отличается тем, что дает начало синтезу еще одного класса биологически активных веществ—лейкотриенов. Характерная особенность структуры лейкотриенов заключается в том, что она не содержит циклической структуры, хотя лейкотриены, как и простаноиды, построены из 20 углеродных атомов. В структуре лейкотриенов содержатся четыре двойные связи, некоторые из них образуют пептидолипвдные комплексы с глутатионом или с его составными частями (лейкотриен D может далее превращаться в лейкотриен Е, теряя остаток глицина). Основные биологические эффекты лейкотриенов связаны с воспалительными процессами, аллергическими и иммунными реакциями, анафилаксией и деятельностью гладких мышц. В частности, лейкотриены способствуют сокращению гладкой мускулатуры дыхательных путей, пищеварительного тракта, регулируют тонус сосудов (оказывают сосудосуживающее действие) и стимулируют сокращение коронарных артерий. Катаболические пути лейкотриенов окончательно не установлены. [c.286]

    Серин легко превращается в пируват под действием сериндегидратазы. В связи с этим в тканях имеются условия для превращения глицина (через серин) в пируват. Этим путем осуществляется участие глицина в обмене углеводов. Важную роль играет серин в биосинтезе сложных белков — фосфопротеинов, а также фосфоглицеридов. Помимо фосфатидилсерина, углеродный скелет и азот серина используются в биосинтезе фосфатидилэтаноламина и фосфатидилхолина (см. главу 11). [c.453]

    При образовании ФСК существенна точная взаимная ориентация функциональных групп фермента н субстрата или модификатора. Активный центр, естественно, хирален и, тем самым, стереоспецифичен. С помощью меченых атомов установлено, что реакции молекул типа СААВО происходят на поверхности фермента асимметрично. Это относится, например, к превращению аминомалоновой кислоты в глицин [c.183]

    Эти немногие примеры показывают, что при образовании ФСК существенна точная взаимная ориентация функциональных групп фермента и субстрата или модификатора. Будучи пО строен из Ь-аминокислотных остатков, активный центр стерео-специфичен. С помощью меченых атомов установлено, что реакции молекул типа СААВВ происходят на поверхности фермента асимметрично. Это относится, в частности, к ферментативному превращению аминомалоновой кислоты (содержащей меченый углерод в одном из двух карбоксилов) в глицин  [c.376]

    П р.и м ен е н и е X л ор ан ги д р и д о в. Превращение ацил-амийокислот в соответствующие хлорангидриды (см. стр. 781) является одним из наиболее старых способов активирования карбоксильной группы (Э. Фишер). Так, хлорангидрид карбо-бензоксигЛициаа легко реагирует с глицином в щелочной среде, образуя карбо бензо ксиглицил-глицин  [c.802]

    Кирни и Толберт [11] утверждают, что гликолевая кислота составляет основную часть продуктов фотосинтеза, выделяемых изолированными хлоропластами фосфорные эфиры и сахароза удерживаются внутри хлоропластов. Хотя механизм синтеза гликолевой кислоты неизвестен, существует предположение, что она образуется из активного гликолевого альдегида , связанного с действием транскетолазы. Это предположение подтверждается сообщением [19], что изолированные хлоропласты в темноте в отсутствие углекислоты превращают рибозо-5-фосфат в гликолевую кислоту. При низком парциальном давлении углекислого газа такие пенто-зофосфаты, как рибулозодифосфат, накапливаются, создавая источник для синтеза гликолевой кислоты. Аналоги гликолевой кислоты, такие, как а-окси-2-пиридинметансульфоновая кислота, также вызывают накопление гликолевой кислоты. В присутствии этих ингибиторов в листьях и изолированных хлоропластах, освещаемых в атмосфере С Юг, быстро накапливается С -гликолевая кислота. В этих условиях гликолевая кислота накапливается, вероятно, вследствие подавления ее дальнейшего превращения в глиоксилевую кислоту, глицин, серин и т. д. Эти данные указывают на важную роль гликолевой кислоты в превращениях углерода при [c.282]


Смотреть страницы где упоминается термин Глицин превращение: [c.55]    [c.136]    [c.176]    [c.262]    [c.330]    [c.284]    [c.499]    [c.636]    [c.638]    [c.640]    [c.641]    [c.185]    [c.232]    [c.422]    [c.496]    [c.125]    [c.92]    [c.46]   
Биохимия человека Т.2 (1993) -- [ c.343 , c.346 ]

Биохимия человека Том 2 (1993) -- [ c.343 , c.346 ]




ПОИСК





Смотрите так же термины и статьи:

Глиоксилат превращение в глицин

Глицин

Глицин превращение в серии

Глицин, анаэробное превращение

Глицин, анаэробное превращение предшественник кофермента

Глициния

Превращения аланина глицина

Пути превращения глицина

Серин превращение в глицин

Тетрагидрофолиевая кислота участие в превращении серии глицин

Треонин превращение в глицин

Треонин превращение в глицин и ацетальдегид



© 2025 chem21.info Реклама на сайте