Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пептиды в природе

    Нахождение пептидов в природе и их значение [c.89]

    Химический синтез пептидов чрезвычайно важен, тем более что разработанные для этого методы могут быть применены также для синтеза белков. Между первым получением пептида Фишером и Фурне (глицилгли-цин, 1901 г.) и автоматическим синтезом полипептидов и белков в наше время лежит три четверти века интенсивного развития органической химии. Разработаны многочисленные методы направленного синтеза пептидов. Важнейшие из этих методов рассмотрены в этой главе (наряду с методами защиты амино- и карбоксильных групп и функций боковых цепей). Обсуждаются также проблемы рацемизации, стратегии и тактики пептидного синтеза, принципы образования циклических пептидов. В конце главы помещен обстоятельный обзор важнейших пептидов, встречающихся в природе, причем наряду с описанием соединений и получением их с помощью химического синтеза уделяется внимание связи строения и действия. [c.92]


    Для ионного обмена в тонких слоях применяют специальные сорта ионообменной целлюлозы. В зависимости от природы активных групп ионообменные целлюлозы могут быть катионитами и анионитами. В тонких слоях этих целлюлоз можно разделять не только неорганические ионы, но и ряд органических соединений пептидов, белков, нуклеотидов, липидов и др. [c.131]

    Одно из видоизменений белковых гидролизатов, наиболее полно отраженное в научной литературе, достигается в результате реакции пластеина после протеолиза. Растворимая часть гидролизата после гидролиза регенерируется посредством центрифугирования, диализа или ультрафильтрацией, что позволяет концентрировать до 50 % твердого вещества. В этом случае добавление эндопептидазы, такой, как папаин или химотрипсин, приводит к некоторой конденсации пептидов и образованию геля. Природа этого геля полностью пока не выяснена. [c.610]

    Вопрос о том, что было первичным продуктом — пептиды или аминокислоты,— является спорным. По Мэтьюзу, аминокислоты и в природе и в модельных опытах получается из пептидов. [c.179]

    Уже упоминалось, что в природе обычно преобладает один из антиподов, а образование второго подавлено. Это относится не только к сахаридам и аминокислотам (а значит, к пептидам и белкам), но и к ряду других соединений. Причина того, что- [c.95]

    Аминокислоты представляют собой карбоновые кислоты, содержащие кроме карбоксила еще аминогруппу. В природе встречаются как в свободном виде, так и главным образом как составные части пептидов и белков. [c.186]

    Молекулярные структуры на основе жирных кислот, их производных, витаминов, порфиринов, пептидов способны имитировать биологические процессы, протекающие в природе, они используются в биофизических, биохимических исследованиях и изучаются как потенциальные лекарственные препараты. [c.180]

    В природе в условиях ферментативного катализа осуществляется АС с исключительно высокой стереоселективиостью. Являясь асимметрическими продуктами, ферменты способствуют синтезу веществ строго определенного строения. Например, при действии ( >ермента химотрипсина па рацемические эфиры окси- и аминокислот идет АС пептидов. [c.226]

    В дальнейшем синтезу аспартама был посвящен ряд исследований [51—57]. Одной из аминокислот, входящих в молекулу аспартама, является фенилаланин, широко распространенный в природе. Поэтому наиболее удобным и дешевым способом получения аспартама является аминолиз ангидрида аспарагиновой кислоты (схема 3.16), в котором аминогруппа защищена фрагментами, используемыми в синтезе пептидов [58-63]. [c.92]


    Гидролиз химотрипсином проводят при 37° С в щелочной среде (pH 8,0—8,6). Отношение фермента к белку 1 100 (по весу). При длительном гидролизе фермент к субстрату добавляют двумя или тремя порциями. Природа буфера, используемого для гидролиза, зависит от характера последующей работы. При разделении пептидов гидролизата хроматографическими и электрофоретическими методами на бу- [c.140]

    Пептиды. 1. Глутатион выделен в 1921 г. Гопкинсом, синтезирован в 1934 г. Харрингтоном и Милом. Широко распространен в природе, принимает, тхо-видимому, участие в окислительно-восстановительных процессах в клетке. [c.524]

    Существенная роль иода в живой природе известна и различные аспекты его физиологической и биохимической активности неоднократно обсуждались в специальной литературе, главным образом, медицинского направления. В гл. 1 впервые подробно и последовательно рассмотрены данные по термодинамике комплексообразования иода с низкомолекулярными и биологически активными молекулами, включая аминокислоты, пептиды, макроциклические лиганды, а также некоторые биополимеры. Значительное место отведено анализу роли среды в данном процессе. [c.5]

    Величины энтальпийных коэффициентов межмолекулярных взаимодействий дают важную информацию о природе взаимодействия растворенное вещество-растворенное вещество, наибольшей информативностью обладают величины hi. Хорошо известно, что взаимодействие пептидов с неполярной боковой цепью (гидрофобное взаимодействие) характеризуется положительными вкладами в величины Н , а их цвиттерионные и полярные группы вносят отрицательные вклады (гидрофильное взаимодействие). Анализ данных табл. 4.2 показывает, что межмолекулярные взаимодействия имеют гидрофобную природу для разбавленных растворов следующих пептидов (в порядке уменьшения гидрофобного взаимодействия) ОЬ-а-аланил-ВЬ-валин > [c.195]

    Указанные общие направления фрагментации пептидов могут маскироваться другими каналами распада, зависящими от природы аминокислот, входящих в исследуемые пептиды. [c.166]

    При количественном исследовании влияния на ДОВ синтетических поли пептидов природы растворителей и боковых цепей должно оказаться очень полезным применение этого метода анализа к данным по ДОВ для большого числа различных гомополипептидов в одном и том же растворителе и одного синтетического гомополипептида в разных растворителях. Как подчеркивалось в предыдущих разделах, знание таких эффектов является очень существенным при интерпретации данных по ДОВ глобулярных белков с точки зрения структуры. [c.240]

    В этом уравнении указана только концевая часть пептидной цепи. Карбоксипепти-даза атакует только амидную группу иа конце цепи. Однако ее активность не зависит от природы боковых цепей К и К. Карбоксипептидазы катализируют гидролиз пептидов, но не обладают никакой активностью в гидролизе жиров последнюю реакцию катализирует совершенно другая группа ферментов. Присущая ферментам высокая степень специфичности необходима для того, чтобы все реакции, протекающие в сложных организмах, были в определенной мере независимы друг от друга. [c.451]

    В ранние периоды развития химической организации на поверхности Земли азот входил в состав несложных молекул H N, NHa, NH( N)2, NH2OH, нитридов, а в свободном состоянии был составной частью первичной атмосферы. Но высокая реакционная способность соединений азота привела к относительно быстрому образованию более сложных соединений. Доказано прямыми опытами, что разнообразные физические воздействия стимулируют возникновение аминокислот и пептидов . Вызывает удивление число разнообразных путей, ведущих от простых соединений к аминокислотам. Электрические разряды, радиация различной природы, термическое воздействие и другие факторы способны вызвать в смесях несложных соединений (аммиак, метан, вода, параформальде- [c.179]

    У различных аминакислот гидрофобные или гидрофильные свойства выражены сильнее или слабее в соответствии с химической природой радикалов, входящих в их состав. Гидрофобность или гидрофильпость пептидов определяется их аминокислотным составом. Поверхность глобул большинства нативных белков цитоплазмы в целом гидрофильна, так как остатки гидрофобных аминокислот спрятаны внутрь глобул. У белков мембран, наоборот, гидрофобные остатки аминокислот располагаются на поверхности. Впрочем, [c.168]

    Вторая часть доказательства коллинеарности между нуклеотидной последовательностью в ДНК и последовательностью аминокислот в белках включала в себя определение полной аминокислотной последовательности триптофансинтетазы и картирование пептидных фрагментов мутантных ферментов (гл. 2, разд. 3,2). Пептидные карты позволили идентифицировать дефектные пептиды и точно установить природу аминокислотных замещений в большом числе различных ауксотрр-фов по триптофану. Когда это было сделано, оказалось, что мутациям, локализованным очень близко друг к другу, соответствовали аминокислотные замещения в непосредственно (или очень близко) прилегающих друг к другу участках полипептидной цепи. [c.251]


    В природных источниках аминокислоты встречаются в индивидуальном виде, в соединении с несколькими молекулами различной химической природы (как правило, это антибиотики, коферменты), в соединении между собой нескольких аминокислот — пептиды и в виде биополимеров — белки. Согласно вышеприведенной структурной изомерии, основная масса аминокислот представлена а-изомерами (3- и 7-аминокислоты в живых системах представлены единичными случаями. Здесь можно упомянуть тормозный [c.68]

    Этот класс мини-пептидов — один из наиболее широко распространенных в природе. Следует подразделять дикетопиперазины, которые являются истинно природными соединениями, так как образуются в метаболитичес-ких процессах, и дикетопиперазины, которые образуются из пептидов и белков как при ферментативном или химическом гидролизе, так и при термолизе. Общая их структура и принципиальные реакции образования были приведены в разделе 4.2. [c.87]

    Степень полимеризации П. составляет от 10-20 до неск. тысяч остатков. Каждый моносахаридный остаток в составе П. может находиться в пиранозной или фуранозной форме и иметь а- или Р-конфигурацию гликозидного центра (см. Моносахариды). Моносахаридный остаток способен образовывать одну глнкозидную связь с соседним моносахаридом, но может предоставить иеск. гидроксильных rpyim для присоединения др. моносахаридов. В соответствии с этим, как и в случае олигосахаридов, молекулы П. могут быть линейными или разветвленными. Линейные П. имеют один невосстанавливающий и один восстанавливающий конец в разветвленных П. также м. 6. только один восстанавливающий конец, тогда как число невосстанавливающих концевых моносахаридных остатков на 1 превышает число разветвлений. Благодаря гликозидной гидроксигруппе восстанавливающего конца молекулы П. могут присоединяться к молекулам неуглеводной природы, напр, к белкам и пептидам с образованием гликопротеинов и протеогликанов, к липидам с образованием липополисахаридов и гликолипидов и т.д. в сравнительно редких случаях наблюдается образование циклических П. [c.21]

    Исключительно велико также значение химии углеводов в развитии биологии и особенно биохимии. Углеводы, вслед за белками и пептидами, являются важнейшими составными частями живого организма. Для животного организма углеводы представляют главный источник энергии, его топливо. Пища млекопитающих состоит прежде всего из углеводов, которые далее подвергаются сложным процессам гликолиза, в результате чего выделяется необходимая для организма энергия. Однако этим далеко не исчерпывается роль углеводов в жизнедеятельности животного. Многие вещества, регулирующие ответственные жизненные процессы, являются производными углеводов. Это, как правило, весьма сложные высокомолекулярные соединения, содержащие наряду с углеводами пептидную и липоидную составляющую, природа которых еще в большинстве случаев не определена. Однако уже сегодня можно уверенно назвать несколько важнейших классов углеводосодержащих веществ, значение которых в процессах жизнедеятельности первостепенно. Это специфические полисахариды, определяющие группы крови, специфические полисахариды, регулирующие иммунитет, гликолипиды (например, цереброзиды и ганглиозиды), входящие в состав нервной ткани, наконец, гликопептиды — сложные комплексы белков и углеводов, имеющие исключительное, хотя еще и далеко не полностью выясненное значение в процессах жизнедеятельности. [c.8]

    Дальнейшие исследования показали, что аналогичные процессы проходят и с пептидами р-оксиаминокислот с образованием 0-пептидов (М. М. Ботвиник, С. М. Аваева, Э. А. Мистрюков). Бергман предполагал, что такие перегруппировки могут иметь место и в природе. [c.507]

    Следующей задачей при определении строения пептидов является установление характера связи и последовательности аминокислотных остатков в молекуле пептида или белка. Эта задача, трудно выполнимая в настоящее время для белков с большим молекулярным весом, облегчается тем, что в природе встречается значительное число относительно низкомолекулярных соединений, представляющих собою пептиды. Виланд предлагает различать три группы природных пептидов олигопептиды, состоящие из 2—10 аминокис/ют, полипептиды, состоящие из 10—100 аминокислот, и макропептиды, к которым относятся собственно белки. Изучение природных пептидов представляет собой важный этап в подходе к изучению строения белка. Исследование обычно начинают с определения числа цепей, входящих в состав объекта изучения. Для этого пользуются одним из ранее приведенных методов, например диннтрофенилированием, действием азотистой кислогы или аминопептидазы для определения Н-концевой аминокислоты и восстановлением, гидразинолизом или действием карбоксипептидазы для определения С-концевого остатка (см. стр. 510 и далее). [c.514]

    Циклическим пептидам с дисульфидными мостиками посвящены общир-ные систематические исследования. В настоящее время растущий интерес вызывают работы по образованию пептидлактонов (например, актиномицина). Эфирная связь имеет больщое значение в случае гетеромерных пептидов, содержащих наряду с аминокислотами также гидроксикислоты. Больщинство таких пептидов встречается в природе в виде циклических структур (циклические пептолиды). [c.201]

    Химическая природа участков связывания ионов Ыа+ и К+ в ионном насосе неизвестна. Однако некоторые соображения на этот счет позволяют высказать данные, полученные при изучении антибиотиков пептидной природы, многие из которых связывают ионы металлов и катализируют их диффузию через мембраны [58]. Примером соединения такого рода может служить циклический депсипептид (пептид, который наряду с амидными содержит также и сложноэфирные связи) — валиномицин. В состав этого антибиотика входят остатки О- и Ь-валина, L мoлoчнoй кислоты и О-оксиизовалериановой кислоты. [c.365]

    В природе встречаются пептидные вещества, построенные ие только из аминокислот, но содержащие также оксикислоты, длинные остатки жирных кислот и др. компоненты кроме того, в образовании связей между боковыми цепями могут принимать участие не только тиольные функции, но также и гидроксильные группы боковых цепей протеиногенных кислот. С учетом всех этих фактов данное в разд. 2.1.1 определение пептидов представляется не совсем корректным. Следует различать гомомерные пептиды, состоящие исключительно из аминокислот, и гетеромерные пептиды, которые кроме аминокислот содержат также небелковые компоненты. [c.87]

    Пептиды широко распространены в природе. Они присутствуют во всех клеточных организмах (пептидный пул). В настоящее время трудно снсте-матическн классифицировать пептиды по химическим н физическим критериям, поэтому обычно за основу берут их физиологическое действие. [c.89]

    В-четвертых, химический синтез иногда проводят из экономических соображений. Например, применяемый для терапевтических целей окситоцин в настоящее время по этой причине получается исключительно химическим синтезом. Это же относится и к некоторым другим пептидам, как, например, к АКТГ и секретину. Синтетический секретин в десять раз дешевле природного продукта, изолированного из свиных кишок. Также обстоит дело и со многими другими активными пептидами. Наряду с вопросами стоимости важную роль играет здесь также доступность пептидов, получаемых химическим синтезом, так как некоторые активные пептиды, как уже упоминалось, встречаются в природе только в нанограммовых количествах. В случае же специфических пептидов человека их получение возможно только синтетическим путем. На примере синтезов АКТГ, глю-кагона и секретина можно показать, что синтетические продукты имеют более высокую степень чистоты, чем пептиды, изолированные из природных источников. Полное разделение родственных по аминокислотной последовательности пептидов с противоположным или другого рода действием часто не всегда возможно с помощью применяемых в настоящее время методов изолирования и очистки. [c.94]

    Бергман н сотр. использовали новую аминозашитную группу для получения различных пептидов [4]. Были синтезированы первые пептиды, встречающиеся в природе, — глутатион, карнозин и др. [c.100]

    Использованию ферментов в качестве катализаторов для реакции соединения пептидов и в настоящее время уделяется большое внимание. Катализ образовании пептидов при биосинтезе белка осуществляет фермент перти-дилтрансфераза. Так как этот фермент взаимодействует с протеиногенными аминокислотами независимо от природы боковой цепи, теоретически он представляет собой идеальный катализатор для реакций целенаправленного синтеза пептидов. Пептидилтрансфераза в сложной рибосомной системе структурно тесно связана со всеми другими составляющими, кроме того, на стадии элонгации во время биосинтеза белка одновременно действуют также другие факторы. Поэтому вероятность того, что выделенный из естественной среды фермент вообще будет способен к катализу реакции синтеза пептидов, очень мала. Никакого выхода в практику пептидного синтеза не получил также изученный Липманном механизм биосинтеза пептидных антибиотиков, который проходит с участием определенных ферментов. [c.166]

    Некоторые биологические активные пептиды, встречающиеся в природ ,, имеют циклическое строение, для их химического синтеза должны быть разработаны соответствующие методы. Сравнительно легко можно получить гомодетный Вд1клический пептид. В этом случае одна пептидная связь образуется между карбоксильной и аминогруппами одной и той же пептидной единицы. В случае синтеза циклических гетеродетных гомомерных пептидов ситуация гораздо сложнее. У таких пептидов замыкание кольца происходит посредством образования связи дисульфидного или эфирного типа. [c.201]

    Среди веществ, положительно влияющих на когнитивные функции мозга, привлекают внимание вещества пептидной природы. Открытие эндогенных регуляторов пептидной природы явилось больщим достижением молекулярной биологии и медицины [9]. Эндогенные пептиды играют важную роль в регуляции биохимических и физиологических процессов в организме животных и растений, в том числе у животных и человека - в регуляции специфических нейрохимических процессов в центральной нервной системе [1, 4]. [c.208]

    Хорошо известно, что конформационное состояние молекул, особенно, 1 ких лабильных, как молекулы пептидов, существенно зависит от природы растворителя. Естественен вопрос - какой же смысл в этом слу-We имеют результаты теоретического рассмотрения пространственного строения изолированной молекулы, или, как часто принято говорить, Цолекулы в вакууме Очевидно, результаты такого анализа были бы пол-ростью лишены физического смысла, если бы окружающая среда опре- [c.159]


Смотреть страницы где упоминается термин Пептиды в природе: [c.147]    [c.191]    [c.36]    [c.10]    [c.174]    [c.252]    [c.252]    [c.295]    [c.288]    [c.21]    [c.110]    [c.468]    [c.236]    [c.134]   
Общая органическая химия Т.10 (1986) -- [ c.285 ]




ПОИСК





Смотрите так же термины и статьи:

Нахождение пептидов в природе и их значение



© 2025 chem21.info Реклама на сайте