Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография физико-химические основы

    Сущность хроматографии, ес физико-химические основы, история ее возникновения и развития, значение для науки и техники. Разновидности хроматографии. Виды хроматографии. Жидкостная и газовая хроматография, их отличительные особенности и области применения. Газовая хроматография как один из наиболее эффективных и -перспективных методов анализа и препаративного разделения сложных смесей. Варианты газовой хроматографии. Основные задачи газовой хроматографии. Предварительные сведения об аппаратуре, методике и примеры применения газовой хроматографии. Широкие и капиллярные колонки, заполненные и открытые. [c.296]


    Физико-химические основы селективности разделения при аналитических применениях жидкостной адсорбционной молекулярной хроматографии рассмотрены в лекциях 116 и 17. [c.265]

    В пособии изложены физико-химические основы и практические методы хроматографического анализа. Рассмотрена классификация и даны основы распределительного, адсорбционного, молекулярно-ситового, ионообменного, осадочного, адсорбционно-комплексообразовательного и окислительно-восстановительного методов хроматографии. Приведены различные варианты использования этих методов — колоночный, капиллярный, на бумаге, в тонких слоях. Показаны возможности применения хроматографических методов в анализе неорганических и органических соединений, а также для решения задач исследовательского характера. [c.2]

    Физико-химические основы молекулярно-ситовой хроматографии. Если раствор, содержащий молекулы различного размера, ввести в колонку, то молекулы стремятся диффундировать из более концентрированного внешнего раствора в растворитель, находящийся в порах геля. В статических условиях этот процесс будет проходить до тех пор, пока не установится равновесие. При протекании раствора через колонку молекулы образца будут проникать в поры геля, если концентрация их снаружи больше, чем внутри геля. Когда зона растворенного вещества покинет данный участок геля, концентрация компонента внутри геля станет больше, чем его концентрация снаружи, и мо- [c.70]

    Физико-химические основы осадочной хроматографии [c.216]

    Рассмотрим физико-химические основы сущности хроматографического процесса разделения на примере газо-жидкостной хроматографии, когда смесь анализируемых компонентов, находящихся в газовой фазе, проходит вместе с газом-носителем вдоль нелетучей жидкости. [c.288]

    Одно из ярких проявлений значения химии поверхности твердых тел и адсорбции представляет молекулярная хроматография, в частности газовая хроматография. Газохроматографический метод стал одним из основных приборных методов анализа в различных областях научных исследований и промышленности. Этот метод становится также важным средством физико-химических исследований. Простота физико-химической основы метода газовой хроматографии — использование различий в молекулярных взаимодействиях у разных компонентов смеси при растворении или при адсорбции — обеспечила его универсальность и высокую эффективность, позволяющие в настоящее время анализировать многокомпонентные смеси как органических, так п неорганических веществ с температурой кипения до 600° С. Возможность проведения экспрессных анализов и их автоматизации, высокая чувствительность ионизационных детекторов, простота п стандартность аппаратуры определили быстрое развитие газовой хроматографии. Не только заводской контроль, но п автоматизация важных процессов химической и нефтехимической промышленности в большинстве случаев основываются на газовой хроматографии. [c.3]


    Физико-химические основы процесса выделения газов из тугоплавких металлов при горячей экстракции с последующим их определением методом газовой хроматографии на колонке с цеолитом. Определены Нг, Ыг, СО и СН4 в сплаве, содержащем цирконий, и в ниобии. [c.208]

    Вигдергауз M. G. Физико-химические основы и современные аспекты газовой хроматографии. Изд-во Самарского ун-та, 1993. 153 с. [c.586]

    В основу определения физико-химических характеристик с помощью газовой хроматографии положена известная функциональная связь этих характеристик с параметрами хроматографического опыта величинами удерживания и шириной хроматографического пика. Первые представляют собой функцию коэффициента распределения или величины адсорбции, что позволяет определять коэффициенты активности, термодинамические функции адсорбции или растворения, структуру изучаемых соединений и другие характеристики газообразных, жидких и твердых веществ. [c.160]

    Основу принципов автоматизации составляет совместное использование физико-химических методов анализа (хроматографии, спектроскопии, потенциометрии, спектрофотометрии и др.) и электронно-вычислительной техники. В некоторых случаях такой подход позволяет полностью переложить управление процессом на автоматы. Высокая интенсивность некоторых современных процессов не допускает ручного управления вообще, и их автоматизация является необходимостью. Таковы процессы дегидрирования, галогенирования и многие другие. В будущем ожидается полная перестройка всех химических производств на автоматическое управление. [c.7]

    В основе измерения коэффициентов активности лежит измерение коэффициента распределения изучаемого вещества между подвижной газовой и неподвижной жидкой фазами в хроматографической колонке. Знание обеих этих физико-химических констант одновременно позволяет предсказать возможность, эффективность и порядок разделения двух летучих веществ газовой хроматографией и экстрактивной дистилляцией. Кроме того, знание этих констант при различных температурах хроматографической колонки позволяет рассчитывать теплоты и энтропии растворения пара в жидкости и жидкости в другой жидкости. Коэффициент распределения газа или пара между подвижной газовой и -неподвижной жидкой фазами в колонке рассчитывают по формуле, выведенной на основе формул Мартина. [c.188]

    Материал учебника несколько шире рамок действующей программы. В него вошли такие разделы физической химии, как основы учения о строении вещества и химической связи, теория спектральных методов исследования. Несколько более широко, чем в обычных курсах физической химии, даны такие разделы, как свойства электролитов, электрохимия, экстракция, перегонка с водяным паром, адсорбция, катализ, получение и стабилизация золей и эмульсий, мицеллообразование и солюбилизация в растворах поверхностноактивных веществ (ПАВ), применение ПАВ в фармации. Рассмотрено влияние дисперсности на свойства порошков. Принимая во внимание аналитическую направленность специальности Фармация и важное значение методов молекулярной спектроскопии для исследования и анализа лекарственных веществ, авторы уделили большое внимание изложению теории физико-химических методов анализа (рефрактометрия, поляриметрия, фотометрия, спектрофо-тометрия, кондуктометрия, потенциометрия, полярография, хроматография, электрофорез и др.). [c.3]

    Хроматография является эффективным методом разделения, анализа и физико-химического исследования веществ. В основе этого метода лежит различие в адсорбционных или иных свойствах соединений, благодаря чему они по-разному распределяются между твердым сорбентом и протекающей через его слой жидкостью (или газом). [c.346]

    Хроматографические процедуры чрезвычайно многообразны. Они классифицируются в зависимости от агрегатного состояния подвижной фазы (жидкостная и газовая хроматография), от физико-химического принципа, лежащего в основе разделения веществ между подвижной и неподвижной фазами (адсорбционная, распределительная, ионообменная и гель-хроматография), от аппаратурного оформления (колоночная и плоскостная хроматография), от решаемой задачи (аналитическая и препаративная хроматография). [c.338]

    В физико-химических методах анализа используются химические или электрохимические реакции и анализ ведется на основе исследования зависимости между химическим составом и каким-либо физическим свойством равновесной или неравновесной химической системы. Соответственно различают методы анализа фотометрические (или фотометрия), хроматографические (или хроматография), кинетические и электрохимические. [c.4]


    Измерение удельных удерживаемых объемов лежит в основе исследования физико-химических свойств веществ методом газовой хроматографии, так как они являются такими же характерными константами, как температура плавления (кипения), показатель преломления и плотность. [c.166]

    Детальная интерпретация механизма сорбции на неполярных неподвижных фазах выполнена Хорватом [201—203] на основе сольвофобной теории [357, 358]. Не останавливаясь на подробностях физико-химических выкладок, приводим лишь основные выводы сольвофобной теории обращенно-фазовой хроматографии. [c.52]

    Неполярные привитые сорбенты (класс IV) применяются в основном в ОФ ЖХ. Обычно в этом случае применяют относительно неполярные сорбенты (например, углеводороды Се или ig) в сочетании с очень полярными растворителями. В простейшем варианте компоненты пробы неионогенные, а растворитель чаще всего представляет собой водноорганическую смесь, основу в которой составляет вода. В качестве органических компонентов наиболее часто используются метанол и ацетонитрил. В хроматографии с обращенными фазами для анализа высокополярных компонентов можно использовать в качестве растворителя воду. Напротив, для анализа неполярных веществ могут потребоваться безводные растворители. Относительная инертность и стабильность привитых фаз углеводородной природы позволяет использовать растворители с различными физико-химическими свойствами. Это обеспечивает необычайно широкое применение хроматографии с привитыми фазами в сравнении с другими вариантами ЖХ (о повышении селективности см. гл. V). [c.386]

    Во втором издании (первое — в 1979 г.) изложены основы теории и практики качественного и количественного анализа, методы анализа органических веществ, физико-химические (инструментальные) методы, технический анализ металлов, сплавов, руд, анализ газов и газовая хроматография. Описаны техника работ с приборами и методы расчета. [c.2]

    Хроматография, обязательно включающая процесс разделения смесей веществ в динамическом режиме, охватывает не только достаточно обширный раздел аналитической химии, но и лежит в основе ряда технологических процессов. В связи с этим хроматография включает два основных направления информационное и технологическое. Первое обеспечивает информацию о качественном и количественном составе и физико-химических свойствах исследуемых объектов, второе — получение материальных продуктов. [c.16]

    Однако по своим физико-химическим основам рассматриваемые процессы аналогичны — в обоих используется различие во взаимодействии разделяющего агента с компонентами заданной смеси. Так, Херингтон [47] нащел, что это определяет возможность использования газо-жидкостной хроматографии для решения вопросов, связанных с практическим применением метода экстрактивной ректификации. Кроме того, использование этой возможности, основанное на количественных закономерностях процесса хроматографического разделения, было исследовано многими авторами [48—53]. [c.56]

    Простая физико-химическая основа хроматографического разделения молекул и макромолекул на адсорбентах, возможность регулирования и использования различий в геометрической структуре и химической природе поверхности, нелетучесть большинства адсорбентов, их высокая термическая и химическая стабильность и легкая реген ер ируемость делают адсорбенты особенно удобными при работе аналитических колонн в режиме программирования температуры, а также в препаративном и производственном применениях газовой и молекулярной жидкостной хроматографии. Наряду с этими практическими применениями, газо-адсорбционная хроматография становится также важным методом физико-химического исследования -химии поверхности твердых тел, изотерм, теплот и энтропий адсорбции. [c.5]

    Horta А, -Ion (Евр.),1973, , 386,489- 965 РЖХим,1974,5Б1473. Физико-химические основы хроматографии.(классификация видов хроматографии и ее физико-химические основы.) [c.15]

    Айвазов Б.В. Основы газовой хроматографии.-М. Высш.школа,1977.183 с. РЖХим,1978,6Б1289К. (Физико-химические основы,процесса ГХ обзор различных вариантов ГХ капиллярной, вакантной препаративной, без газа-носителя и др.) [c.5]

    Кроме таких аналитических применений разделения компонентов смесей на основе различной их адсорбции или различ ной растворимости, газовая хроматография, очевидно, может быть применена и для решения обратной задачи, т. е. для быстрого определения адсорбции и теплоты адсорбции, величины по-. ерхности твердого тела и ее химических свойств или для опре-1еления термсдинамических свойств раствора в неподвижной жидкости и связанных с этими свойствами физико-химических величин (констант равновесия, изотерм распределения, коэффи циентов активности, тепловых эффектов и т. п.). [c.546]

    В основу определения физико-химических характеристик с помощью газо-жидкостной хроматографии положена функциональная связь этих характеристик с параметрами хроматографического опыта величинами удерживания и шириной хроматографического яика. [c.208]

    В пособии рассматривается теория хроматографического процесса, даны теоретические основы выбора сорбентов, освещены теоретические аспекты различных вариантов газовой хроматографии капиллярной, вакантной, препаративной, хроматографии без газа-носителя и с программированием температуры. Специальная глава посвящена применению газовой хроматографии для изучения физико-химических свойств веществ. [c.2]

    В пособии излагаются теоретические основы наиболее важных, распространенных и перспективных физико-химических методов анализа эмиссионного спектрального анализа, абсорбционной спектроскопии, люминесцентного анализа, спектроскопии ЯМР, нефелометрии и турбидиметрии, радиометрических методов аналнза, копдуктометрии, потенциометрии, полярографии, электролиза и кулоно-метрии, кинетических методов анализа, хроматографии, масс-снектрального апа- [c.343]

    Метод определения коэффициента молекулярной диффузии в газовой фазе на основе измерения высоты теоретической тарелки незаполненной сорбентом колонки при различных скоростях газа-носителя разработали Жуховицкий и Туркельтауб. Этому же вопросу посвящена работа Кнокса и Мак-Ларена и других авторов. Этим не ограничивается перечень физико-химических величин и свойств, которые могут быть измерены и изучены методами газовой хроматографии. Для всех этих величин и свойств характерно то, что они вытекают из единой первоначальной величины, а именно из объема удерживания. Таким образом, качественная природа вещества связана с его физико-химическими свойствами через объем удерживания. [c.188]

    В пособии изложены теоретические основы физико-химических методов исследования электронного парамагнитного и ядерного магнитного резонанса, люминесцентных и фотохимических методой, импульсного фотолиза, газожидкостной хроматографии. Описаппе методов рассчитано на то, чтобы читатель, имеющий общую физикохимическую подготовку, мог освоить эти методы, не пользуясь дополнительной литературой. Рассмотрено применение методов для изучения кинетики и механизмов химических реакций. Даны примеры экспериментальных работ. [c.2]

    Матрицей называют твердую основу неподвижной хроматографической фазы. Она имеет вид сплошных или пористых гранул последние часто представляют собой прострапствеииую сетку линейных полимеров. Для придания материалу матрицы необходимых для хроматографии свойств его модифицируют. Модификация люжет представлять собой химическое присоединение ( присадку ) поио-геиных групп, гидрофобных молекул, биологически активных веществ или фиксацию путем адсорбции тонкого слоя растворителя. Хотя особенности хроматографического процесса определяются в основном характером модификации, физико-химические параметры матрицы могут существенно влиять на свойства неподвилчной фазы. К таким параметрам относятся следующие размеры и форма гранул и их нор диапазон разброса этих размеров механическая прочность материала матрицы характер его смачивания и набухания в элюенте химическая стойкость и инертность в условиях хроматографической элюции реакционная способность, обеспечивающая возможность химической модификации матрицы. [c.48]

    Т.к. хроматография представляет собой физико-химический процесс, наиболее естественным была бы классификация жидкостной хроматографии на несколько методов, положив в основу классификации иринции деления смеси на комноненты. [c.8]

    Числовые значения этих параметров, а также коэффициентов уравнения (4.6) известны далеко не в полном объеме. Поэтому прямое использование данного уравнения для расчета удерживания пока неосуществимо, во всяком случае для сложных молекул сорбатов, представляющих наибольший практн ческий интерес. В то же время теоретическое выявление роли упомянутых факторов послужило основой для многочисленных моделей удерживания, связывающих коэффициенты емкости с доступными структурными параметрами или физико-химическими свойствами сорбатов. Эти модели имеют большое практическое значение при интерпретации хроматограмм, выборе условий разделения. Полученные с их помощью результаты в совокупности убедительно подтверждают сольвофобную теорию обращенно-фазовой хроматографии. [c.65]

    Уравнение Мартина дает основу для установления структуры анализируемых соединений методами хроматографии (в таком анализе тонкослойной хроматографии может отводиться лишь умеренная роль). В 1щеальном случае для выбранного вещества в конкретной системе дает дополнительную частичную информацию об определяющих структуру факторах, соответствующих прочим физико-химическим характеристикам (например, парахор, показатель преломления). В обобщенном виде можно записать  [c.175]


Смотреть страницы где упоминается термин Хроматография физико-химические основы: [c.175]    [c.232]    [c.574]    [c.511]    [c.511]    [c.13]    [c.198]    [c.15]    [c.27]    [c.25]    [c.251]    [c.97]    [c.287]   
Химия азокрасителей (1960) -- [ c.309 ]




ПОИСК







© 2025 chem21.info Реклама на сайте