Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серебро стойкость

    Пластикат нагревают в закрытом сосуде до тех пор, пока он не станет настолько текуч, что позволит погружать в него покрываемые детали. Пластикат не поддается воздействию горячих и холодных растворов, применяемых в гальванотехнике, — щелочей, серной кислоты, соляной кислоты, хромовой кислоты, растворов для гальванических ванн — никеля, кадмия, цинка, меди, серебра. Стойкость против воздействия хромовой и азотной кислот выделяет полихлорвинил среди других пластмасс. [c.140]


    Химическая стойкость Благородные металлы (не реагируют с кислотами с выделением водорода) Серебро, золото Неблагородные металлы (реагируют с кислотами, выделяя водород) Натрий, калий [c.13]

    Серебро растворимо в азотной и концентрированной серной кислотах, царской водке, цианистых солях. Оно обладает исключительной коррозионной стойкостью в уксусной кислоте и других органических кислотах всех концентраций (присутствие кислорода значительно снижает стойкость серебра), а также во многих органических соединениях. [c.275]

    В холодной соляной кислоте на серебре образуется нерастворимая защитная пленка хлористого серебра, которая достаточ-1Ю устойчива. Горячая соляная кислота растворяет эту пленку и вызывает дальнейшее растворение серебра. В присутствии окислителей разрушающее действие соляной кислоты усиливается. Так же действует и плавиковая кислота. Серебро обладает исключительно высокой стойкостью в едких щелочах как в их йодных растворах, так и в расплавах. [c.275]

    Сплавы золота с медью или серебром сохраняют коррозионную стойкость золота, пока его содержание в сплаве превышает некоторое критическое значение, которое Тамман [1] назвал границей устойчивости. Ниже границы устойчивости сплав корродирует, например в сильных кислотах при этом нераство-ренным остается чистое золото в виде пористого металла или порошка. Такое поведение сплавов благородных металлов известно под названием избирательной коррозии и, очевидно, по характеру сходно с обесцинкованием сплавов медь—цинк (см. разд. 19.2.1). [c.292]

    Коррозионная стойкость свинцово-сурьмяного сплава повышается при наличии у него мелкокристаллической структуры. Образованию такой структуры способствуют быстрое охлаждение металла при литье, термическая обработка и присутствие в металле некоторых примесей. Такие примеси могут служить модификаторами (регуляторами кристаллизации). Выполняя функции центров кристаллизации, они способствуют образованию мелкокристаллического сплава. В этом случае на его поверхности образуются более плотные защитные пленки, закрывающие межкристаллитные прослойки и вызывающие пассивирование металла. Модификаторами могут быть примеси серебра, серы, фосфора и др. В производстве сплава модификатором является сера в чистом виде (0,03%) или в виде эбонита. При отливке тонких решеток для некоторых типов стартерных аккумуляторов представляет практический интерес добавление в свинцово-сурьмяный сплав небольших количеств серебра и мышьяка. [c.76]


    Наиболее распространена защита алюминия и его сплавов от коррозии электрохимическим оксидированием, при котором окисление достигается действием электрического тока (см. работу 5 этого раздела). Алюминиевые изделия помещают в электролит в качестве анода, поэтому метод обработки носит название — анодное окисление, или анодирование. При анодировании на алюминии и его сплавах получают пленки толщиной 5—20 мк, а в специальных случаях до 200—300 мк. Анодирование применяется не только для защиты от коррозии и улучшения адгезии (сцепления) с лакокрасочными покрытиями, но и для декоративной отделки поверхности металла, получения на ней фотоизображений, повышения стойкости против истирания, получения поверхностного электро- и теплоизоляционного слоя и слоя высокой твердости. Твердость анодной окисной пленки на чистом алюминии 1500 кг/мм , т. е. выше, чем твердость закаленной инструментальной стали. С помощью анодных пленок алюминия изготовляют алюминиевые выпрямители и конденсаторы. В последнее время анодная окисная пленка используется как подслой для лучшего сцепления алюминия с гальваническими покрытиями (хромом, никелем, серебром и др.). [c.146]

    МЕДИ СПЛАВЫ — сплавы на основе меди, содержащие олово, цинк, алюминий, никель, железо, марганец, кремний, бериллий, хром, свинец, золото, серебро, фосфор и другие легирующие элементы. Добавки повышают прочность и твердость, стойкость против коррозии, улучшают антифрикционные свойства. М. с. делят на латуни, бронзы и медно-никелевые сплавы. Латуни — М. с., в которых главным легирующим элементом является цинк. Самыми распространенными латунями являются томпак (80  [c.156]

    В практике медь, серебро и золото находят широкое применение, благодаря своей стойкости по отношению к химическим воздействиям. [c.396]

    Для отливки решеток и других деталей применяют сплавы свинца с сурьмой с содержанием последней от 4 до 8%. Сплавы РЬ—5Ь хорошо заполняют форму, обладают достаточной прочностью и твердостью, плавятся при более низких температурах, чем свинец. Однако эти сплавы имеют меньшую чем свинец электропроводность, и на сурьме перенапряжение для выделения водорода значительно ниже, чем на свинце. Иногда к сплавам добавляют серебро или мышьяк. Следует учесть, что хотя серебро повышает коррозионную стойкость сплава, но, так как водород выделяется на серебре с меньшим перенапряжением, чем на свинце, то попадание серебра на отрицательный электрод увеличивает саморазряд аккумуляторов. Применение добавки мышьяка для повышения коррозионной стойкости поэтому более перспективно. Важна высокая чистота применяемых свинца и сурьмы. Вредными являются примеси цинка, висмута, магния и другие, снижающие перенапряжение для выделения водорода и коррозионную стойкость сплава. [c.497]

    Серебро и золото — химически малоактивные металлы, вследствие химической стойкости их относят к благородным металлам. [c.252]

    В группу самой низкой стоимости входят свинец, цинк, медь, железо. Никель, кадмий составляют промежуточную группу, к дорогостоящим относятся серебро, палладий, золото. Экономическая целесообразность применения алюминия взамен цинка определяется не только повышенной коррозионной стойкостью в большинстве коррозионно-активных сред нефтяной и газовой промышленности, но и снижением экономических затрат на применяемый материал. Так, соотношение цен цинка и алюминия составляет 16,3. Учитывая соотношение плотностей, получаем, что при одной и той же толщине алюминий значительно дешевле цинка. Технико-экономические затраты, связанные с использованием покрытия, в значительной степени зависят от способа нанесения его на изделия. При выборе способа исходят из технологических возможностей нанесения покрытия на конкретное изделие для получения наилучших эксплуатационных свойств при минимальных экономических затратах. По методу нанесения различают физические, электрохимические и химические методы. [c.49]

    Некоторые сепараторы, например пленка типа целлофана и лак АП-14Л, представляют собой селективные мембраны, способные избирательно пропускать ионы, находящиеся в электролите. Лаковый слой АП-14Л на поверхности катода замедляет прохождение из катодного пространства в анодное растворимых в щелочах соединений ртути, серебра и марганца, снижая скорость саморазряда элементов. Диффузия ионов щелочных металлов и ОН через лаковую пленку происходит без заметных затруднений. Лаковый слой АП-14Л химически устойчив к воздействию сильных окислителей, которыми являются катодные активные материалы. Стойкость и избирательные свойства пленки выражены слабее, чем у АП-14Л, В отсутствие селективных мембран целлюлозные бумажные сепараторы постепенно окисляются соединениями тяжелых металлов, которые в некоторых случаях восстанавливаются до свободных. металлов, например ртути и серебра, и вызывают внутренние межэлектродные замыкания. Пленка также предотвращает возможность замыкания при выпадении из щелочного электролита окиси цинка, которая имеет нарушенную структуру и вследствие этого электронную проводимость. [c.151]


    Серебро, как и все благородные металлы, характеризуется высокой химической стойкостью оно стойко во влажной атмосфере, морской воде, практически не растворяется в соляной нислоте и щелочах и слабо корродирует в серной кислоте Растворяется в азотной кислоте, неустойчиво в растворах аммиака и темнеет под действием серных соединений. [c.124]

    Золото обладает высокой стойкостью против коррозии и окисления при высоких температурах, не растворяется в кислотах и щелочах, не реагирует с сероводородом и другими серосодержащими соединениями. По электро- и теплопроводности, переходному сопротивлению покрытия золотом несколько уступают серебру, но эти свойства, так же как и внешний вид его, не изменяются со временем, в агрессивных средах и в условиях смены низких и высоких температур (термоудар). [c.324]

    Серебро — один из благородных металлов и имеет, в основном, высокую коррозионную стойкость. Однако его применению в качестве покрытия препятствует сильная подверженность потуск- [c.120]

    Для непрямого получения фторалканов применяется метод, основанный на взаимодействии фтористой сурьмы, фтористого серебра или фтористой ртути с алкилгалогенидами [138], Лишь в последние год фторированные парафины привлекли большой интерес вследствие их исключительной термической и хим.ической стойкости. За немногими исключениями, фторированные парафины и в настоящее время еще не получают прямым воз,действием элементарного фтора на парафиновые углеводороды [139]. [c.201]

    Чистые металлы, в том числе и лалладий, для изготовления мембран не используют по ряду технологических требований, прежде всего механической прочности и термической стойкости в газовой среде. Обычно мембранную матрицу создают из сплавов палладия с серебром, никелем, другими металлами при этом свойства сплава должны обеспечить высокую проницаемость по водороду и удовлетворительные физико-меканические характеристики. В табл. 3.12 приведены некоторые характеристики палладия и ряда сплавов на его основе. На рис. 3.16 представлены экспериментальные данные по проницаемости и диффузии водорода в сплавах палладия с серебром [8]. [c.118]

    Магиий медлеппо реагирует с сухим хлором вплоть до температуры плавления металла. Серебро в хлоре и хлористом водороде не разрушается при температурах до 425° С. Титан, обладая прекрасной стойкостью во влажном газообразном хлоре, подвергается сильному разрушению в сухом хлоре, что приводит да> <е к возгоранию металла. Цирконий устойчив в су.хом хлоре. [c.157]

    Как коррозионностойкий материал применяется свинец чистоты не меиее 99,2%- Примесн в свинце (Си, 5п, Аз, Ре, В] и др.) увеличивают прочностные показатели свинца, но уменьшают его пластичность. Примеси мышьяка придают свинцу хрупкость. Имеются указания, что примеси серебра, никеля и меди повышают коррозионную стойкость свинца, если они распределены в сплаве равномерно. Однако в процессе коррозии на поверхности свинца скапливаются эти благородные примеси, образующие микрокатоды, что может привести к повышению скорости коррозни свинца. [c.261]

    Помимо в 11сокой коррозпонно " СТОЙКОСТИ, к числу положительных свойств серебра следует отнести его высокую пластичность, исключительно высокую теплопроводность, высокую отражательную снособность ири сравнительно благоприятных механических и технологических показателях. По физическим свойствам серебро близко к меди, а ио механической прочности оно ус.тупает никелю и нержавеющей стали. [c.275]

    При азрировании раствора коррозионная стойкость алюмг ння, меди, никеля, свинца, углеродистых сталей снижается. Не рекомендуется применять олово и серебро. В условиях кристаллизации соли возможна точечная коррозия нержавеющих сталей под слоем кристаллов. [c.821]

    Золотое Медь и ее спла вы П 15—18 Серебро 12 Золото 3 Наиесенне на детали высокочастотной и измерительной аппаратуры с целью снижения переходного сопротивления и сохранения постоянства электрических параметров Покрытия характеризуются твердостью по Виккерсу 40—10С единиц высокой химической стойкостью (не окисляются и ие тускнеют в агрессивных средах) высокой теплопроводностью и элек- [c.914]

    Чистый палладий не выдерживает давления, он растрескивается и разрушается в среде водорода, поэтому проведено большое числл исследований [27] по подбору сплава палладия, с другими металлами. В настоящее время имеются сплавы с более высокой прочностью, стойкие в среде водорода и при наличии таких примесей как СО, СОа, Н3О и углеводороды С —Сд, причем проницаемость водорода через сплавы палладия выше, чем через чистый палладий. Однако такие сплавы неработоспособны при наличии в газе сернистых соединений. Хорошую проницаемость и высокую стойкость показали сплав палладия с серебром и никелем (85% Р<1, 10% А ,. 5% N1), сплав палладия с серебром, иридием и платиной (66% Р(1, 31% Ag, 3% 1г, 0,2% Р1). Имеется предложение [28] с целью удешевления сплава заменить серебро медью. [c.55]

    Для понимания процесса химической коррозии и разработки против нее эффективной защиты необходимо прежде всего знать механизм окисления металла и свойства окисной пленки. Известно, что активность металлов по отношению к кислороду уменьшается с повышением темперагуры. При нагревании оксида металла до соответствующей температуры происходит ее разложение (диссоциация), и реакция (2.5) протекает справа налево до конца. Мерой стойкости оксида можно считать давление образующегося газообразного кислорода (после установления равновесия) над помещенным в закрытый сосуд оксидом - давление диссоциации. Оксид образуется на поверх ности металла только при такой температуре, когда давление диссо циации меньше, чем парциальное давление кислорода в соприкамю щемся с металлом газе (например, воздухе, дыме). Так, давлени1 диссоциации оксида серебра примерно при 400 С превосходит пар циальное давление кислорода в воздухе, поэтому при температуре [c.21]

    Реакция полимеризации протекает по типу радикальных процессов, инициатором ее служат перекиси, в том числе персульфаты. Введение в реакционную смесь и( котарого количества ионов серебра в сочетании с персульфатом заметно улучшает свойства полимера—повышается его твердсзсть и термическая стойкость. Полимеризацию проводят как в органических растворителях (спирт, бензол), так и в водной эмульсии при 45—65 . В результате полимеризации образуется тэнкнй порошок. [c.260]

    Но в одной из важнейших работ коллектив института потерпел серьезную неудачу и в значительной степени по вине его директора. В этот период внимание многих ученых и конструкторов было приковано к возможностям нового углеродного материала — пироуглерода. Дело в том, что он обладает рядом уникальных с1юйств. Будучи осажденным нз газовой среды при температурах сравнительно низких, он способен как проникать в поры углеродной подложки, так и осаждаться в виде наружного слоя обычно небольшой толщины — 3-5 мм. Такие слоевые структуры после высокотемпературной обработки дают пирофафит. Его плотность приближается к теоретической плотности кристаллов графита, и он имеет колоссальную анизотропию свойств — в направлении, параллельном поверхности отложения и перпендикулярно ей. А эти свойства могут быть рационально использованы в технике, в частности ракетной. Высокая плотность такого графита позволяет резко повысить его эрозионную стойкость, гарантировать сохранение геометрии сопла на всем участке его работы. Высокая, выше, чем у серебра, теплопроводность графита в слоях, параллельных поверхности подложки, может быть использована для быстрого отвода тепла от критического сечения сопла. И наоборот, очень низкая теплопроводность в перпендикулярном от подложки направлении может быть использована как великолепный теплоизолятор мeтilлличe киx конструкций, находящихся вблизи критического сечения сопла. Поэтому пирографитами для этих целей занима юсь много как зарубежных, так и отечественных научных коллективов. [c.111]

    Кислородный электрод готовится аналогичным способом. В отличие от водородного электрода в качестве катализатора здесь применяют серебро Ренея. Исходный сплав для его получения содержит 657о Ад и 35% А1. Кислородные электроды при работе подвергаются заметному коррозионному разрушению. Для повышения стойкости поверхность металла защищают окисной пленкой. Для этой цели электрод пропитывают раствором гидроокиси лития и нагревают на воздухе при 700—800 °С. Происходит поверхностное окисление металла. Ионы лития, внедряясь в кристаллическую решетку окислов никеля, снижают электрическое сопротивление образующегося окисного слоя. [c.53]

    Медь является электроположительным металлом ( си /си + = 0,337 В), поэтому медные покрытия не обеспечивают электрохимической защиты стали от коррозии. Вследствие большой )азности потенциалов между медью и железом оголенные участки последнего (в порах и непокрытых местах) быстро корродируют. Кроме того, медь нельзя применять как самостоятельное покрытие, так как она покрывается на воздухе слоем основных углекислых солей. Чаще всего медные покрытия используют в качестве подслоя достаточно большой толщины (9—36 мкм) перед покрытиями другими металлами, благодаря чему достигается уменьшение пористости и увеличение коррозионной стойкости, а также экономия дефицитных и дорогих металлов (никель, серебро и др.). [c.31]

    В пленочных и полупроводниковых микросхемах широко используются различные металлы и сплавы, у которых стабильность электрических характеристик сочетается со стойкостью их к химической и электрохимической коррозии. Для проводников и контактов используются металлы с высокой электрической проводимостью золото, серебро, медь и алюминий, причем последний чаще всего для внутрисхемных соединений. В качестве материалов для резистивных пленок преимущественное применение нашли тантал, нихром, хромосилицидные и другие сплавы на основе хрома и тантала. Одни из названных металлов являются коррозионно-стойкими вследствие их высоких окислительно-восстановительных потенциалов (Аи, Ад), другие — из-за самопроизвольного образования пассивирующих оксидных пленок на их поверхности (А1, N1, Сг, Та). Однако при контакте резисторов из этих металлов и алюминия невозможно избежать образования гальванопар Сг—А], Ы —А1 и др., которые чрезвычайно чувствительны к любого рода загрязнениям. Этими загрязнениями могут оказаться остаточная влага, следы кислорода и некоторые химические вещества, выделяющиеся из стенок корпуса и защитного покрытия при технологических операциях герметизации и защиты микросхем. В результате электрохимической коррозии алюминий в месте контакта разрушается, что в итоге приводит к разрыву электрической цепи. [c.281]

    Укрепление пероксида водорода. Раствор пероксида водорода, получаемый из ректификационных колонн, содержит 30—40% Н2О2. При необходимости концентрация пероксида водорода может быть увеличена до 85— 90% в специальных ректификационных аппаратах при температуре 66—77 °С и остаточном давлении 8,8 кПа. Раствор пероксида водорода с концентрацией 90% является достаточно стойким продуктом. Однако наличие таких примесей, как ионы платины, железа, марганца, серебра, хрома, меди приводит к каталитическому разложению Н2О2. Для повышения стойкости пероксида водорода в его растворы добавляют стабилизаторы, например пирофосфат натрия и гипофосфит натрия. [c.177]

    Пнрофосфатиый электролит, содержащий, г/л серебро (мет) 25—35, яирофосфат калия 350—450, карбонат аммония 40—45, использующийся при 15—25 "С, /н=0,7- 1,0 А/дм , имеет более низкую рассеивающую способность по сравнению с цианидным прочность сцепления с бронзой н латунью хорошая, коррозионная стойкость, мнкротвердость, удельное и переходное сопротивления осадков из пирофосфатной и цнанидной ванн приблизительно одинаковы [c.128]

    Красивый вид, сопротивление потускнению и коррозионному воз чей стБию различных агрессивных соединений, нггзкое значение и постоянство переходного электросопротивления, коррозионная стойкость при высоких температурах, хорошая паяемость после длительного хранения определяют область применеиия золотых покрытий Золото обладает хорошими антифрикционными свойствами и износостойкостью, по при использовании в обычных узлах трення преимуществ перед серебром не имеет и ввиду ботьшей стоимости, как правггло, не используется Исключением служит применение золотых покрытий для контактов электронных приборов, когда антифрикционные свойства н износостойкость должны сочетаться с коррозионной стойкостью покрытия. [c.132]

    Заменой палладия в промышленности служат, главным образом, его сплавы с никелем, иобальтом, марганцем, сл рьмой, серебром, золотом, повышающие износостойкость с сохранением низкого переходного сопротивления, с висмутом, оловом, повышающие способность покрытий к пайке в течение длительного времени с платиной, повышающие химическую стойкость покрытий У большинства сплавов палладия значительно уменьшается способиость наводороживания и поглощении различных газов [13 20, 31, 47]. [c.139]

    Для изготовления решеток используют сплав свинца и 6— 8% сурьмы, для деталей крепления — сплав свинца и 3—6% 5Ь. Сплав получают в стальных котлах вместимостью около 10 т с электрообогревом при температуре свыше 290 °С. Добавка сурьмы к свинцу способствует улучшению литейных свойств, снижению температуры плавления, увеличению прочности сплава. Однако вследствие более низкого перенапряжения выделения водорода на сурьме по сравнению со свинцом усиливаются коррозия решеток и саморазряд аккумулятора. Для повышения коррозионной стойкости сплава в его состав нередко вводят модификаторы, способствуюш ие образованию при литье мелкокристаллической структуры (добавки серебра, серы, мышьяка). Наиболее предпочтительным является сплав, содержащий 3—5% 5Ь и 0,1—0,3% Аз. [c.92]

    Это общее утверждение впрочем не означает, что сплавы со сте-хиометрической потерей материала от коррозии совершенно непригодны для изготовления заземлителей на станциях катодной защиты. Иногда в качестве материала для анодных заземлителей применяют даже железный лом кроме того, при электролитической обработке воды используют алюминиевые аноды (см. раздел 21.3). Цинковые сплавы находят применение как материал для анодов лри электролитическом травлении для удаления ржавчины, чтобы предотвратить образование гремучего хлорного газа на аноде. Для внутренней защиты резервуаров при очень низкой электропроводности содержащейся в них воды на магниевые протекторы иногда накладывают ток от внешнего источника с целью увеличить токоотдачу (в амперах) (см. раздел 21.1). По так называемому способу Кателько наряду с алюминиевыми анодами (протекторами) намеренно устанавливают медные, чтобы наряду с защитой от коррозии обеспечить также и предотвращение обрастания благодаря внедрению токсичных соединений меди в поверхностный слой. Впрочем, все такие области применения являются сугубо специальными. На практике число материалов, пригодных для изготовления анодных заземлителей, сравнительно ограничено. В основном могут применяться следующие материалы графит, магнетит, ферросилид с различными добавками, сплавы свинца с серебром, а также так называемые вентильные металлы с покрытиями из благородных металлов, например платины. Вентильными называют металлы с пассивными поверхностными слоями, не имеющими электронной проводимости и сохраняющими стойкость даже при очень положительных потенциалах, например титан, ниобий, тантал и вольфрам. [c.198]

    Серебро применяется в крайне ограниченном объеме,. но в некоторых случаях дает хорошие результаты. Широкое применение серебра, по-види-мому, ограничивается высокой стоимостью и низкой стойкостью к сере. Серебро применяют для электролитического серебрения пружин предохранительных клапанов [4]. [c.186]


Смотреть страницы где упоминается термин Серебро стойкость: [c.40]    [c.251]    [c.524]    [c.274]    [c.812]    [c.827]    [c.835]    [c.837]    [c.849]    [c.260]    [c.175]    [c.236]    [c.49]   
Химия органических соединений фтора (1961) -- [ c.31 , c.34 ]




ПОИСК





Смотрите так же термины и статьи:

Серебро коррозионная стойкость

Серебро, химическая стойкость



© 2025 chem21.info Реклама на сайте