Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембрана, активный транспорт

    Процессы транспорта, будь то облегченный или активный транспорт, представляются весьма сложными и протекают с участием нескольких мембранных белков. Иногда для описания транспортной системы используют термин пермеаза. В связи с тем что количества белков, вовлеченных в транспорт веществ, незначительны, для изучения транспортных систем были использованы методы генетического анализа. Можно надеяться, чго с помощью этих методов удастся определить число генов, детерминирующих белки, которые участвуют в переносе конкретных соединений через мембраны. [c.358]


    Особенностью этих процессов является то, что связывание происходит без затрат энергии, но специфически если в мембране нет подходящих участков связывания для захватываемой частицы, то она и не взаимодействует с ней. Однако образование пузырька и его отрыв от мембраны требует затрат энергии, что указывает на сходство специфических видов клеточного транспорта с активным транспортом. Характерно также дальнейшее слияние пузырьков с лизосомами, где содержимое пузырьков разрушается. [c.109]

    Аминокислоты очень легко проникают в клетку. Доказано, что содержание аминного азота в клетках значительно выше, чем в среде. Коэффициент распределения аминокислот равен 200—900. Транспорт аминокислот нельзя объяснить законами простой диффузии. Надо полагать, что имеет место активный транспорт веществ, в котором участвуют особые переносящие вещества — пермеазы. Транспорт аминокислот через мембраны связан с потреблением энергии. В аминокислотном транспорте также наблюдается антагонизм — валин мешает проникновению фенилаланина аланин, лейцин, гистидин мешают проникновению глицина. О-Формы аминокислот менее антагонистичны по своим свойствам, чем Ь-формы. Микроэлементы в клетках могут накапливаться в больших количествах, чем в окружающей среде. [c.17]

    Современные представления о проблеме транспорта веществ через мембраны (включая мембраны эпителиальных клеток кишечника) не позволяют точно охарактеризовать молекулярный механизм транспорта аминокислот. Существует два представления, по-видимому, дополняющих друг друга о том, что требуемая для активного транспорта энергия образуется за счет биохимических реакций (это так называемый направляемый метаболизмом транспорт) или за счет энергии переноса другого транспортируемого вещества, в частности энергии движения ионов Na (или других ионов) в клетку. [c.426]

    Движение клеток и организмов, выполнение ими механической работы например, мышечной) производятся особыми сократительными белками, служащими рабочими веществами этих процессов. Сократительные белки выполняют ферментативную, АТФ-азную функцию, реализуют превращение химической энергии (запасенной в АТФ, с. 40) в механическую работу. Зарядка аккумулятора , т. е. окислительное фосфорилирование, происходит в мембранах митохондрий при непременном участии ферментов дыхательной цепи. Окислительно-восстановительные ферментативные процессы происходят и при фотосинтезе. Другие мембранные белки ответственны за активный транспорт молекул и ионов сквозь мембраны и, тем самым, за генерацию и распространение нервного импульса. Белки определяют все метаболические и биоэнергетические процессы. [c.87]


    Мембраны не являются пассивными полупроницаемыми оболочками, но принимают прямое и очень важное участие во всех функциях клетки. Мембраны обеспечивают активный транспорт вещества, идущий в направлении, противоположном градиенту химического или электрохимического потенциала. В мембранах локализованы основные биоэнергетические процессы — окислительное фосфорилирование и фотосинтез. АТФ синтезируется в мембранах митохондрий, в тилакоидных мембранах хлоропластов зеленых растений. Есть основания думать о связи между рибосомами, на которых синтезируется белок, и мембранной системой эндоплазматического ретикулума. Репликация ДНК и хромосом, по-видимому, происходит с участием мембран. [c.333]

    Суммарный ток покоя должен уравнять концентрации внутри и снаружи клетки. Когда мембрана возбуждена, скорость ионных потоков увеличивается. Для того чтобы эти потоки ингибировать, т. е. сохранить длительный постоянный потенциал покоя, пассивная диффузия катионов должна быть уравновешена активным транспортом (ионным насосом). К этому вопросу мы еще вернемся в гл. 6. [c.114]

    Принято различать активный транспорт через биологические мембраны, требующий специальных источников энергии и обычно совершаемый против электрического или концентрационного градиента, и пассивный транспорт, определяемый только разностью концентраций переносимого агента на противоположных сторонах мембраны нли направлением поля. В обоих случаях, однако, должен существовать механизм селективного переноса данного вещества или иона, поскольку сама по себе липидная (липопротеиновая) мембрана для такого рода агентов практически непроницаема. [c.590]

    Плазматическая мембрана играет важнейшую роль в обмене ве-ш еств. Она служит осмотическим барьером клетки и контролирует как поступление веществ внутрь клетки, так и выход их наружу. В мембране имеются механизмы активного транспорта и системы субстрат-специ-фичных пермеаз. По-видимому, липидная пленка элементарной мембраны пронизана мостиками (или каналами) из белков, и именно эти белки служат порами, через которые осуществляется регулируемый транспорт веществ. [c.24]

    АТР поставляет энергию также и для активного транспорта через мембраны [c.427]

    Непористые реакционно-диффузионные мембраны отличаются от прочих химической формой связи компонентов разделяемой смеси и исходного материала мембраны. Химические реакции приводят к образованию новых веществ, участвующих в транспорте целевого компонента. Массоперенос компонентов разделяемой газовой смеси определяется не только внешними параметрами и особенностями структуры матрицы, но и химическими реакциями, протекающими в мембране. В подобных системах за счет энергетического сопряжения процессов диффузии и химического превращения возможно ускорение или замедление мембранного переноса, в определенных условиях возникает активный транспорт, т. е. результирующий перенос компонента в направлении, противоположном движению под действием градиента химического потенциала этого компонента. В сильнонеравновесных мембранных системах могут формироваться структуры, в которых возникают принципиально иные механизмы переноса, например триггерный и осциллирующий режимы функционирования мембранной системы. Обменные процессы такого рода обнаружены в природных мембранах, но есть основания полагать, что синтетические реакционно-диффузионные мембраны в будущем станут основным типом разделительных систем, в частности, при извлечении токсичных примесей из промышленных газовых выбросов. [c.14]

    Энергия, освобождающаяся при окислении субстратов и последующем переносе электронов в дыхательной цепи, используется не только на синтез АТФ, но и для осуществления других функций митохондрий, например для активного транспорта ионов a + через митохондриальную мембрану. Если к суспензии аэробно инкубируемых митохондрий в присутствии субстрата добавить некоторое количество ионов a + (в виде какой-либо его соли), то по истечении небольшого промежутка времени весь добавленный Са + оказывается во внутримитохондриальном пространстве. В процессе активного транспорта создается и поддерживается высокий концентрационный градиент ионов Са + по обе стороны митохондриальной мембраны. Когда функционирование дыхательной цепи полностью блокировано, транспорт может обеспечиваться за счет энергии гидролиза АТФ. [c.449]

    У растений имеется своеобразная циркуляторная система, в которой жидкость транспортируется вверх от корней по ксилеме и вниз от листьев по флоеме. Таким путем происходит перенос между клеткайй большого количества различных веществ. В то же время существует активный транспорт веществ через клеточные мембраны и против fpa-диента концентрации. Ряд соединений, транспортируемых от клетки к клетке по одному из этих двух способов, можно классифицировать как гормоны, причем с течением времени их обнаруживается все больше. Сейчас известно пять соединений или групп соединений, относящиеся к категории гормонов растения. Это ауксины (гл. 14, разд. И), гибберел-лины (гл. 5, разд. Д гл. 12, разд. 3,1), цитокинины (гл. 15, разд. Б,4), абсцизовая кислота (рис. 12-13) и этилен (гл. 14, разд. Г, 4). [c.323]


    МЕМБРАНЫ ЖЙДКИЕ, полупроницаемые жидкие пленки или слои, обеспечивающие селективный перенос в-в в процессе массообмена между жидкими и (или) газообразными фазами. Различают свободные, импрегнированные и эмульсионные М. ж. Свободные М. ж,-устойчивые в гравитац. поле слои жидкости, отличающиеся по плотности от разделяемых ими фаз, напр, слой орг. жидкости, расположенный под водными р-рами в обоих коленах и-образной трубки. Импрегнированные М. ж. представляют собой пропитанные жидкостью пористые пленки (полипропиленовые, полисуль-фоновые, политетрафторэтиленовые и др.) или волокна (полипропиленовые, полисульфоновые). Эмульсионные М. ж,-стабилизированные ПАВ жидкие слои, отделяющие капельную фазу от сплошной в эмульсиях типа вода-масло-вода нли масло-вода-масло. Толщина свободных М. ж., как правило, св. 1 мм, импрегнированных 10-500 мкм, эмульсионных 0,1-1,0 мкм. М. ж. могут быть одноко шонентными и многокомпонентными. Первые являются для проникающего через М. ж. в-ва лишь более или менее селективным р-рителем, осуществляют пассивный перенос. Многокомпонентные М. ж. обычно содержат хим. соединения-переносчики, растворенные в мембранной жидкости и способные избирательно связывать и переносить через мембрану диффундирующее в-во (индуцированный либо активный транспорт). Перенос в-в через М. ж. может протекать в режиме диализа и электродиализа (движущая сила процесса-градиент хим илн электрохим. потенциала по толщине мембраны, см. Мембранные процессы разделения ). [c.31]

    Мол. механизмы генерирования и утилизации энергии на промежут. этапах О.в. изучает биоэнергетика, к-рая рассматривает сопряжение биол. окисления с фосфорилированием. Это обусловлено тем, что своб. энергия гидролиза осн. продукта фосфорилирования-АТФ и в меньшей степени др. фосфатных производных, напр, гуанозинтрифосфата, креатинфосфата,-обеспечивает в сопряженных р-циях синтез сложных соед., мьппечное сокращение, транспорт соед. через биол. мембраны против градиента концентрации (активный транспорт), создание на мембране электрич. потенциала, разряд к-рого, в частности, обеспечивает проведение нервного импульса и др. биоэлектрич. явления. Энергия гидролиза АТФ может также трансформироваться в световую энергию или служить в организме источником тепла. [c.316]

    Нек-рые П.-регуляторы иммунитета. К таким П. относят гормоны тимуса, тетрапептид тафтснн Thr—Lys—Pro—Arg (букв, обозначения см. в ст. Аминокислоты), являющийся фрагментом домена С 2 иммуноглобулина G, и пептидный антибиотик циклоспорин А, обладающий иммунодепрессив-ными св-вамн. К пептидным антибиотикам относят также актиномицины и др. Важную роль в активном транспорте ионов через биол. мембраны играют ионофоры. [c.471]

    Все большее развитие получают технологические процессы с участием сложных энзиматических систем, включающих коферменты. Так, созданы ферментные мембранные реакторы, катализирующие непрерывные процессы с регенерацией НАДН (восстановительное аминирование кетокислот, восстановление а-ке-токислот в а-гидроксикислоты). Разработаны системы разделения рацематов посредством стереоспецифического активного транспорта. Например, мембрана, содержащая гексокиназу и фосфата- [c.72]

    Мембраны выполняют в клетке большое число функций. Наиболее очевидной из них является разделение внутриклеточного пространства на компартменты. Плазматические мембраны, например, ограничивают содержимое клетки, а митохондриальные — отделяют митохондриальные ферменты и метаболиты от цитоплазматических. Полупроницае-мость мембран и позволяет им регулировать проникновение внутрь клеток и клеточных органелл как ионов, так и незаряженных соединений. Проникновение многих из них внутрь клетки осуществляется против градиента концентрации. Таким образом, в процессе, известном под названием активный транспорт, совершается осмотическая работа. Протекающий в мембранных структурах бактерий и митохондрий процесс окислительного фосфорилирования служит источником энергии для организма. В хлоропластах зеленых листьев имеются мембраны с очень большим числом складок, которые содержат хлорофилл, обладающий способностью поглощать солнечную энергию. Тонкие мембраны клеток глаза содержат фоторецепторные белки, воспринимающие световые сигналы, а мембраны нервных клеток осуществляют передачу электрических импульсов. [c.337]

    Связывающие белки подошли бы на роль подвижных переносчиков в процессе облегченной диффузии, однако большая часть выделенных белков принадлежит, по-видимому, к системам активного транспорта, и их функция в процессах переноса до сих пор окончательно не установлена. Согласно одному из предположений, связывающий белок обладает сильным сродством к транспортируемому веществу (субстрату) и прочно связывается с ним на наружной поверхности летки. Образовавшийся комплекс белок—субстрат далее диффундирует к внутренней i TopOHe мембраны. Здесь в результате процесса, сопряженного с самопроизвольно протекающей экзергонической реакцией, например с гидролизом АТР, конформация бел1ка меняется таким образом, что его сродство к субстрату уменьшается. В результате транспортируемое вещество переходит в клетку, а связывающий белок диффундирует обратно к наружной поверхности. Там его конформация возвращается к исходной, вероятно, под влиянием химических воздействий. [c.359]

    Как и наружная плазматическая клеточная мембрана, внутренняя митохондриальная мембрана отличается высокой избирательностью. Некоторые неионизированные вещества легко проходят через нее, тогда как транспорт ионных веществ, включая анионы дикарбоновых и трикарбоновых кислот, находится под жестким контролем. В некоторых случаях анионы перемещаются в результате энергозависимого активного транспорта . В других случаях анион может пройти внутрь лишь в обмен на другой анион, выходящий наружу. Во всех этих случаях необходимо участие специфических транслоцирующих белков-переносчиков (гл. 5, разд, Б,2). [c.423]

    Мономерные фосфорилированные нуклеозиды играют важнейшую роль в метаболизме и биоэнергетике, в регуляции жизнедеятельности на молекулярном уровне. Это яркое свидетельство химического единства живой природы (с. 24), разнообразного использований кйётками одних и тех же веществ. Среди нуклео-зидов особенно существен аденозин. На рис. 2.6 изображена структура аденозин-5 -моно-, ди- и трифосфата (АМФ, АДФ, АТФ). АТФ является главным аккумулятором химической энергии в клетке. Эта энергия выделяется при гидролитическом отщеплении 7-фосфата в реакции АТФАДФ + Фв (Фв—фосфорная кислота Н3РО4). Энергия АТФ расходуется на все нужды клетки для биосинтеза белка, для активного транспорта веществ через мембраны, для производства механической и электриче- [c.40]

    Активный транспорт реализуется в результате сопряжения диффузионных потоков с экзергоническими реакциями, проходящими в толще мембраны. Перенос вещества пронсходит за счет свободной энергии, выделяемой при химических реакциях. Как правило, это энергия гидролиза АТФ. Указанное сопряжение не тривиально. Как уже говорилось (см. с. 312), коэффициенты сопряжения скалярных и векторных потоков в изотропной системе равны нулю, согласно принципу Кюри. Сопряжение [c.346]

    Перейдем к молекулярному рассмотрению. Как уже сказано, источником свободной энергии для активного транспорта служит АТФ. АТФ усиливает активный транспорт, будучи введена внутрь клетки, но ие влияет ка него, находясь во внешней среде. Цз клеточных мембран удалось выделить К, Na-активируемую АТФ-азу. Этот фермент расщепляет АТФ только в присутствии ионов К" " и Na" . Действие АТФ в мембране непосредственно связано с активным транспортом — глюкозид оубаин ингибирует АТФ-азу при той же концентрации, при которой он прекращает работу натриевого насоса. Гидролиз АТФ in vitro с помощью этой АТФ-азы происходит в две стадии. Вначале выделяется АДФ, а неорганический фосфат остается связанным с ферментом. Эта стадия активируется ионами Na"". Второй этап требует ионов К"" и состоит в отщеплении фосфата от фермента. Сходная, но уже пространственная асимметрия свойственна насосу — на внутренней поверхности мембраны его активность зависит от Na, на внешней — от При расщеплении АТФ на мембранах наблюдается переход меченого фосфата из АТФ в фосфопротеи-ды мембраны. Кинетика действия АТФ-азы in vitro характеризуется S-образной зависимостью скорости реакции от концентраций Na"", К+ и АТФ. Гидролиз одной молекулы АТФ в мембране сопровождается выходом из клетки двух-трех ионов Na"". [c.348]

    Клеточная мембрана и сеть эндоплазматических мембран являются существенным элементом каждой живой клетки. Они не только отграничивают друг от друга клетки и их структурные элементы, но и обеспечивают активный транспорт низкомолекулярных веществ. Основной биологической функцией эндоплазматической сети и связанного с ней образования — так называемого аппарата Гольджи является, по-видимому, синтез основных биополимеров клетки и их транспортировка в нужные участки клетки . В участках так называемой шероховатой сети с эндоплазматическими мембранами связаны рибонуклеопротеидные частицы — рибосомы, в которых происходит синтез белка. В гладких участках эндоплазматической сети происходит биосинтез полисахаридов и липидов. [c.600]

    Натриевые и калиевые каналы составляют только незначительную часть аксональной мембраны. Лаздунский [31] рассчитал, что в нерве ракообразных лишь одна тысячная часть полипептидных цепей принадлежит компонентам каналов. В гл. 7 подробно рассматривается система активного транспорта, здесь [c.159]

    В гл. 6 рассматривались натриевые и калиевые каналы, регулирующие пассивный ток ионов во время потенциала действия (рис. 7.1). Однако еще одна функция аксональной мембраны связана с проведением нервных импульсов — активный транспорт ионов. Если бы вход ионов натрия в клетку сопровождался только выходом ионов калия, градиент концентрации между обеими сторонами клетки вскоре исчез. Пассивное проникновение ионов Na+ через мембрану в состоянии покоя приводит к тому же эффекту, поэтому входящие ионы натрия должны вновь выводиться наружу, а диффундирующие снаружи ионы К+ должны направляться внутрь аксона. Естественно, что для этого должна расходоваться энергия, поскольку указанный процесс осуществляется против градиента концентрации. Именно этой цели и служат ионные насосы, содержащиеся в мембране аксона благодаря метаболической энергии, накопленной в АТР, они осуществляют активный транспорт ионов для поддержания мембранного потенциала. Направление движения иона и направления градиентов схематически изображены на рис. 7.2. Ходжкин и Кейнес [1] исследовали активный транспорт ионов Na+ через мембрану нерва. Они показали, что поток радиоактивных ионов Na+ из клетки ингибируется 2,4-динитрофенолом (рис. 7.3, а), который блокирует синтез АТР. В ходе дальнейших экспериментов Ходжкин и Кейнес установили, что транспорт Na+ обеспечивается при участии ферментов (рис. 7.3,6). Охлаждение клетки до 9,8 °С (или до 0,5 °С) явно замедляло выход ионов натрия, хотя известно, что пассивная диффузия Na+ не столь сильно зависит от температуры. [c.167]

Рис. 7.5. Модель активного транспорта ионов через мембрану. Согласно модели, Ка+,К -насос является переносчиком с более высоким сродством к ионам натрия внутри клеточной мембраны, а к ионам калия — снаружи. Изменение сродства происходит вследствие конформационных изменений при фосфорили-ровании и дефосфорилировании. Неясно, каким образом натрпйсвязывающие центры белков перемещаются с внутренней стороны мембраны на наружную. Не доказано вращение, предполагаемое моделью. Неясно также, поче на каждые три нона Ма+ транспортируется только два иона К" ". А=АТР Рис. 7.5. <a href="/info/1893449">Модель активного транспорта ионов</a> <a href="/info/152902">через мембрану</a>. <a href="/info/771004">Согласно модели</a>, Ка+,К -насос является переносчиком с <a href="/info/1456069">более высоким</a> сродством к <a href="/info/263999">ионам натрия</a> внутри <a href="/info/4417">клеточной мембраны</a>, а к <a href="/info/14688">ионам калия</a> — снаружи. <a href="/info/960322">Изменение сродства</a> происходит вследствие <a href="/info/2999">конформационных изменений</a> при фосфорили-ровании и дефосфорилировании. Неясно, каким образом натрпйсвязывающие <a href="/info/166596">центры белков</a> перемещаются с внутренней <a href="/info/1388494">стороны мембраны</a> на наружную. Не доказано вращение, предполагаемое моделью. Неясно также, поче на каждые три нона Ма+ транспортируется только два иона К" ". А=АТР
    Активный ионный транспорт в нервной клетке имеет множество функций поддерживает мембранный потенциал возбудимой мембраны (натрий-калиевый насос), регулирует внутриклеточную концентрацию Са + ( a +,Mg2+-ATPaзa) и обеспечивает клетку энергией (РгАТРаза, протонный насос). Натрий-калиевый насос является электрогенным — на каждые три иона На+, транспортируемых наружу, направляются внутрь два иона К" " таким образом, при каледом цикле из клетки забирается по одному положительному заряду. АТР поставляет энергию для обеспечения активного транспорта (против ионного градиента), т. е. осуществляет связь между передачей импульса и метаболизмом нервной клетки. Система ионного транспорта включает АТРазу и ионофор — сложные мембранные белки. Один из белковых компонентов подвергается промежуточному фосфорили-рованию с помощью АТР. Гликозид дигиталиса и уабаин (стро- [c.184]

    Транспорт аминокислот через клеточные мембраны осуществляется в основном по механизму вторично-активного транспорта. В этом случае система активного транспорта приводится в действие не путем прямого гидролиза АТФ, а за счет энергии, запасенной в ионных градиентах. Перенос аминокислот внутрь клеток осуществляется чаще всего как симпорт аминокислот и ионов натрия, подобно механизму симпорта сахаров и ионов натрия. Энергия АТФ затрачивается на выкачивание Ка /К -АТФ-азой ионов натрия из клетки, создания электрохимического градиента на мембране, энергия которого опосредованно обеспечивает транспорт аминокислот в клетку. Известен ряд сходных по строению транспортных систем (транслоказ), специфичных к транспорту аминокислот нейтральных аминокислот с небольшой боковой цепью, нейтральных аминокислот с объемным боковым радикалом кислых аминокислот, основных аминокислот, пролина. Эти системы, связывая ионы натрия, индуцируют переход белка-переносчика в состояние с сильно увеличенным сродством к аминокислоте Ка" стремится к транспорту в клетку по градиенту концентрации и одновременно переносит внутрь клетки молекулы аминокислоты. Чем выще градиент Na , тем выше скорость всасывания аминокислот, которые конкурируют друг с другом за соответствующие участки связывания в транслоказе. [c.366]

    Для проявления активности аминогликозидов важен также механизм их проникновения в клетки-мишени. Будучи заряженными и очень гидрофильными, антибиотики не могут проходить через мембраны путем диффузии. Позтому они научились индуцировать систему транспорта полиаминов, необходимую для нормального функционирования грамотрицательных бактерий, и проникают в клетки с помощью пермеаз спермидина и путресцина в результате активного транспорта. [c.735]

Рис. 14-14. Активный транспорт растворенного вещества против градиента концентрации. Начиная с момента равновесия, т. е. с того момента, когда концентрации данного растворенного вещества в обоих компартментах одинаковы, активный транспорт вещества из одного компартмента в другой обеспечивает его перемещение против градиента кониентрадии. Для создания и поддержания градиента концентрации какого-либо растворенного вещества между компартментами, находящимися по обе стороны мембраны, требуется затрата свободной энергии. Если энергия почему-либо перестает поступать, то вещество из компартмента с более высокой его концентрацией начинает диффундировать обратно, и диффузия продолжается до тех пор, пока снова не установится равновесие, т. е. пока концентрации вещества по обе стороны мембраны не сравняются. Рис. 14-14. <a href="/info/97001">Активный транспорт</a> <a href="/info/73744">растворенного вещества</a> <a href="/info/594026">против градиента концентрации</a>. Начиная с <a href="/info/1648865">момента равновесия</a>, т. е. с того момента, когда концентрации <a href="/info/796433">данного растворенного</a> вещества в обоих компартментах одинаковы, <a href="/info/278304">активный транспорт вещества</a> из одного компартмента в другой обеспечивает его перемещение <a href="/info/594026">против градиента</a> кониентрадии. Для создания и поддержания <a href="/info/25910">градиента концентрации</a> какого-либо <a href="/info/73744">растворенного вещества</a> между компартментами, находящимися по обе <a href="/info/1388494">стороны мембраны</a>, требуется затрата <a href="/info/2431">свободной энергии</a>. Если <a href="/info/1538616">энергия почему</a>-либо перестает поступать, то вещество из компартмента с <a href="/info/1456069">более высокой</a> его концентрацией начинает диффундировать обратно, и диффузия продолжается до тех пор, пока снова не <a href="/info/1489500">установится равновесие</a>, т. е. пока <a href="/info/20378">концентрации вещества</a> по обе <a href="/info/1388494">стороны мембраны</a> не сравняются.
    М (pH 1,0), тогда как концентрация ионов Н в клетках составляет приблизительно 10 М (pH 7,0). Это означает, что обкладочные клетки обладают способностью секретировать ионы водорода даже против градиента порядка 10 1. По-видимому, эти клетки имеют какие-то очень активные мембранные насосы для секреции ионов водорода, так как для поддержания столь высокого градиента концентрации требуется значительное количество энергии. Перенос веществ через мембраны против градиента концентрации называют активным транспортом. Образование желудочной НС стимулируется особым, связанным с мембраной ферментом-TaK называемой" Н-транспортирующей АТРазой. При образовании желудочного сока на каждую молекулу цитозольного АТР, гидролизованного до ADP и фосфата, из цитозоля наружу через плазматическую мембрану выводятся два иона Н . [c.428]


Смотреть страницы где упоминается термин Мембрана, активный транспорт: [c.4]    [c.396]    [c.11]    [c.247]    [c.109]    [c.635]    [c.27]    [c.28]    [c.66]    [c.267]    [c.268]    [c.269]    [c.11]    [c.77]    [c.204]    [c.370]   
Биохимия человека Т.2 (1993) -- [ c.139 , c.141 , c.142 ]

Биохимия человека Том 2 (1993) -- [ c.139 , c.141 , c.142 ]




ПОИСК





Смотрите так же термины и статьи:

Активный транспорт вещества через мембрану

Активный транспорт ионов через мембраны

Мембрана, активный транспорт антипорт

Мембрана, активный транспорт котранспорт

Мембрана, активный транспорт образование

Мембрана, активный транспорт симпорт

Мембрана, активный транспорт триггерная гипотеза

Мембрана, активный транспорт унипорт

Обоснование теоретических соотношений в биологических мембранах активный транспорт

Транспорт веществ и ионов через мембраны активный



© 2025 chem21.info Реклама на сайте