Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метилциклопентены

    А. ИЗ НЕФТЯНЫХ ФРАКЦИЙ В процессе изомеризации метилциклопентана по способу фирмы Шелл применяется очень узкая фракция, выкипающая в пределах 66—85°, состав ее в % объемп. приведен ниже. [c.100]

    Такая смесь углеводородов подвергается обработке в присутствии хлористого алюминия и хлористого водорода, при этом происходит изомеризация метилциклопентана в циклогексан (рис. 46). При температуре 80° [c.100]


Рис. 46. Схема процесса изомеризации метилциклопентана в циклогексан методом Шелла. Рис. 46. <a href="/info/473398">Схема процесса изомеризации</a> метилциклопентана в <a href="/info/1042902">циклогексан методом</a> Шелла.
    В случае наиболее важных парафиновых углеводородов, например мепазина и парафина , выходы и степени превращения малы, поэтому реакция не представляет практического интереса. Степень превращения циклогексана при 20-часовом ультрафиолетовом облучении смеси циклогексана и хлористого оксалила составляет 55% степени превращения метилциклогексана и метилциклопентана равны в тех же условиях 18% И соответственно 3,4%. [c.503]

    По данным Го [162], в определенных случаях наблюдается полностью неселективный гидрогенолиз циклопентанового кольца. Например, для метил- и 1,3-диметил-циклопентанов в присутствии (6—20% Pt)/АЬОз (315°С, 3 МПа) реакция протекает очень селективно, в то время как при низком содержании Pt в катализаторе (0,15—0,60%) гидрогенолиз связей кольца происходит по статистическому закону распределения. В присутствии катализаторов с большим содержанием платины при относительно низких температурах и низких давлениях водорода преобладает главным образом селективный разрыв С—С-связей кольца метилциклопентана. В то же время при неселективном разрыве на катализаторах с низким содержанием платины не наблюдается какой-либо определенной зависимости от температуры. В случае 1,3-диметилциклопентана влияние температуры сказывается более значительно. [c.130]

    На основании результатов, полученных при изучении гидрогенолиза метилциклопентана и взаимной изомеризации образующихся при этом изомерных гексанов на различных Pt-катализаторах (напыленная в вакууме пленка, Pt, отложенная на АЬОз, активированном угле и пемзе), был сделан вывод [170, 171], что взаимные переходы изомерных гексанов, их Сз-дегидроциклизация в метилциклопентан и гидрогенолиз последнего проходят с образованием единого циклического переходного комплекса  [c.135]

    Полученные результаты, как указывалось выше, связываются с протеканием гидрогенолиза метилциклопентана по двум механизмам. Считают [177], что преобладание того или иного из них обусловлено увеличением (рост Рн, очистка водорода от примеси О2) или уменьшением (добавка О2 или Н2О) электрофильности катализатора. Однако, с нашей точки зрения, электрофиль-ность может являться существенным, подчас весьма важным (см., например, [175]), но отнюдь не единственным фактором, определяющим то или иное распределение продуктов гидрогенолиза алкилциклопентанов. Необходимо учитывать также способ адсорбции исходных углеводородов на поверхности катализатора, легкость атаки той или другой связи, наличие взаимодействия атомов в молекуле. [c.137]


    Из трех указанных связей особое значение имеет связь а, отсутствующая у рассмотренных выше гомологов циклопентана, остальные аналогичны связям а и б метилциклопентана. Поскольку лишь разрыв по связи а приводит к к-гептану, удалось определить кажущуюся энергию активации для этого направления гидрогенолиза. Энергия активации гидрогенолиза по связи а на 63 кДж/моль, т. е. довольно существенно, превышает суммарное значение Е (рис. 27). Для направления а отличие от суммарного значения не столь значительно (29 кДж/моль), но все же также достаточно велико. По-видимому, это увеличение энергии активации следует связывать с пространственными затруднениями в образовании и дальнейшем превращении переходного комплекса на поверхности катализатора. В частности, большую роль может играть блокирование метильными группами тех активных участков катализатора, на которых [c.142]

    Рассмотрим теперь с этих позиций результаты, полученные при изучении гидрогенолиза гомологов циклопентана. В проточной системе после установления стационарного режима концентрация водорода на поверхности катализатора относительно мала, так как значительная часть его вытесняется с поверхности платины углеводородом. Наоборот, при импульсной подаче вещества молекулы реагента попадают на поверхность, которая в несравненно большей степени или даже целиком заполнена водородом. Такие значительные различия в концентрации одного из реагентов, вероятно, и сказываются специфически на ходе реакции. Для простоты обсудим возможности гидрогенолиза алкилциклопентанов в условиях обоих методов на примере метилциклопентана. В соответствий с секстетно-дублетным меха- [c.149]

    Два вида адсорбции метилциклопентана на Pt/  [c.150]

    При повышении парциального давления водорода [162, 174] относительная скорость гидрогенолиза метилциклопентана по связи а также увеличивалась. Предлагаемая выше трактовка роли повышенной концентрации водорода на поверхности катализатора хорошо согласуется с этими результатами. С тех же позиций вытеснения углеводорода (всей молекулы или ее части) с поверхности катализатора адсорбированным водородом следует, по-видимому, оценивать и результаты работы [144], в которой исследовалось каталитическое гидрирование циклопентана при повышенном давлении водорода. [c.151]

    На основании квантово-химического расчета постулируется [248], что при каталитическом (Pt, Р(1, N1) гидрогенолизе метилциклопентана положительная поляризация молекулы углеводорода, вызванная смещением электронной плотности от молекулы к поверхности катализатора, должна способствовать снижению степени деметилирования. При этом должна увеличиваться доля н-алканов и 2-метилпентана при некотором снижении доли 3-метилпентана, что согласуется с экспериментальными данными. [c.168]

    Фракция Сб состоит из 91% метилбутана и 9% пентана фракция Се содержит 3% 2,2-диметилбутана, 47% 2,3-диметил-бутана, 31% 2-метил-иентана, 16% 3-метилпентана и 3% метилциклопентана. Нормальный гексан не О бнаружен. [c.126]

    После первой публикации о конфигурационной изомеризации стереоизомерных триметилциклопентанов лишь в начале бО-х годов после работы Го, Руни и Кемболла [4] и первых наших публикаций [5, 6] конфигурационная изомеризация гомологов циклопентана стала предметом широкого обсуждения. Мы показали [5], что в присутствии платинированного угля в широком интервале температур (150—280 °С) стереоизомерные 1,2-ди-метилциклопентаны легко переходят друг в друга. При этом конфигурационная изомеризация проходит с гораздо большей скоростью, чем сопутствующая ей реакция гидрогенолиза пятичленного цикла. Далее нами было показано [6], что активными катализаторами, способствующими протеканию конфигурационной изомеризации, наряду с платиной являются родий, осмий, иридий и палладий, а также рутений [1] и кобальт [7]. [c.65]

    В работе [4] исследована кинетика реакций дейтерообмена полиметилциклопентанов на поверхности металлических пленок (Pt, Pd, Ni, Rh), a также конфигурационной изомеризации цис- и трамс форм 1,1,3,4-тетра-метилциклопентана и цис-1,2-диметилциклопентана. Изучив кинетику дейтерообмена и конфигурационноп изомеризации, Го и соавторы [4] пришли к заключению, что скорости обеих реакций подчиняются уравнению первого порядка. [c.65]

    Во всех цитированных выше работах по гидрогенолизу циклопентанов в качестве катализатора гидрогенолиза применялся платинированный уголь. Значительно сложнее протекает реакция на алюмоплатиновых катализаторах. Подобные катализаторы (содержание Pt от 0,15 до 20%) широко обследовал Го [162] при изучении гидрогенолиза метил-, 1,3-диметил- и полиметилциклопентанов. Оказалось, что относительные скорости гидрогенолиза по различным связям цикла в значительной степени зависят от ряда факторов строения исходного углеводорода, начального давления водорода, температуры, содержания Pt в катализаторе и др. Так, в случае метилциклопентана с ростом начального давления водо  [c.129]

    При исследовании гидрогенолиза метилциклопентана на Р1/5102 при 25—150°С на основании данных по распределению продуктов реакции, а также ИК-спектроско-пии и термодесорбции высказано предположение об образовании 1,2-диадсорбированного промежуточного комплекса [166]. [c.134]

    Селективность и кинетика гидрогенолиза метилциклопентана под давлением водорода подробно исследованы И. И. Левицким, X. М. Миначевым и сотр. [172— 177]. По мнению этих авторов, гидрогенолиз метилциклопентана проходит по двум независимым механизмам [173, 174]. Первый включает в себя стадию образования промежуточного а,р-диадсорбированного о-комплекса типа А, второй аналогичен обсужденному выше неселективному механизму, где промежуточной стадией [c.135]


    Теми же авторами обнаружено очень интересное явление [175] после высокотемпературной обработки катализатора [ 0,3% Р1)/АЬ0з] водородом, очищенным от следов кислорода, селективность гидрогенолиза метилциклопентана по связи а (у атома углерода, несущего заместитель) возрастает более чем в 10 раз. Аналогичный эффект на том же катализаторе, а также на (4% Pt)/ и (1% Pt)/Si02 наблюдали [176] при увеличении парциального давления водорода (рн)- Правда, на двух последних катализаторах наблюдаемый эффект был несколько меньше (селективность возросла только в 2—3 раза), но качественно картина была сходной с наблюдаемой на алюмоплатиновом катализаторе. В присутствии последнего была изучена кинетика гидрогенолиза метилциклопентана по различным связям цикла. При этом были проведены серии опытов с водородом, очищенным от следов Ог и НгО, и с водородом, содержащим Оа, при рн=1 МПа. Оказалось [177], что на катализаторе, предварительно обработанном при 550 °С водородом, очищенным от Ог и НгО, кажущаяся энергия активации гидрогенолиза метилциклопентана по связи а составила 102 кДж/моль, а по связям бив 160 кДж/моль. После обработки катализатора водородом с примесью Ог при 350 °С гидрогенолиз всех связей кольца метилциклопентана проходил практически с одинаковой кажущейся энергией активации 162 кДж/моль. Аналогичные серии опытов были проведены также и при парциальном давлении водорода 4,5 МПа. При этом на очищенном от Ог и НгО катализаторе были получены несколько меньщие значения энергии активации, а на неочищенном катализаторе — заметно большие, т. е. изменение энергии активации при изменении давления водорода зависит от присутствия адсорбированных на ка- [c.136]

Таблица 4. Влияние давления водорода на кинетику гидрогенолиза связей а ( ,) и б ( 5) метилциклопентана над (0,3% Р1)/А120з [177] Таблица 4. <a href="/info/794852">Влияние давления водорода</a> на <a href="/info/1469308">кинетику гидрогенолиза</a> связей а ( ,) и б ( 5) метилциклопентана над (0,3% Р1)/А120з [177]
    Влияние парциального давления водорода на селективность гидрогенолиза метилциклопентана в присутствии различных Pt-катализаторов исследовалось также в работах [178, 179]. Обнаружено, что при 230 °С на (10% Pt)/Ab03 с увеличением парциального давления Нг увеличивается скорость образования 3-метилпентана и уменьшается скорость образования 2-метилпентана [178]. Справедливо полагают [178], что при разных сте- [c.137]

    Смит и соавт. [180] исследовали процессы гидрогенолиза и изомеризации метилциклопентана над бифункциональной Р1/А120з. в качестве ингибирующих добавок, действующих на активные центры катализатора, применяли тиофен и пропиламин. В зависимости от условий процесс можно направить либо в сторону гидрогенолиза с образованием алканов, либо в сторону образования бензола (дегидроизомеризация). При этом каталитические свойства Р1 и А1гОз проявлялись либо в индивидуальном, либо в совместном действии. Неселективный гидрогенолиз свидетельствует, по мнению авторов [180], о ионном механизме реакции. [c.138]

    При исследовании механизма раскрытия пятичленного кольца на различных образцах Р1/А1гОз обнаружено [181] прямое размыкание метилциклопентана на кислой АЬОз. Полагают, что реакция идет путем промежуточного образования протонированной циклической структуры. [c.138]

    Андерсон и Шимомура [182] исследовали превращения метилциклопентана и н-гексана в присутствии Р1-пленки, напыленной в вакууме, при 275—310°С. Считают [182], что гидрогенолиз метилциклопентана проходит через образование промежуточных адсорбированных соединений, строение которых аналогично комплексам А и Б, приведенным на с. 136. Высказывается предположение, что селективность гидрогенолиза в значительной степени зависит от концентрации водорода на поверхности катализатора, что определяет также соотношение адсорбированных комплексов А и Б. Наряду с гидрогено- [c.138]

    Изучен [183, 184] механизм гидрогенолиза циклопентанов на серии катализаторов PtMlaOa с размерами кристаллитов от 1,0 до 20,0 нм, а также на биметаллических Pt—Re-катализаторах (2% Pt и 1,9% Re на AigOa). Считают, что имеется определенная корреляция между размерами кристаллитов Pt и протеканием реакцин гидрогенолиза метилциклопентана по циклическому механизму или механизму сдвига связи. Наиболее заметное изменение механизма реакции происходит на катализаторах с размерами кристаллитов Pt около 2,0 нм. Предполагается, что атомы на ребрах кристаллов входят как в активные центры, ответственные за протекание реакции по циклическому механизму, так и в центры, ведущие ее по механизму сдвига связи. [c.139]

    На основании результатов каталитического гидрогенолиза и изомеризации метилциклопентана и алканов состава Сб в присутствии Pt, нанесенной на Si02, AI2O3 или пемзу в количестве 0,1—10%, был сделан вывод [185], что влияние носителей на распределение продуктов реакции незначительно основную роль играет концентрация Pt, ее дисперсность и температура реакции. [c.139]

    Для выяснения этих вопросов была изучена кинетика и распределение продуктов гидрогенолиза трех других углеводородов уис-1,3-диметилциклопентана и стереоизомерных — цис-1,4-транс-2- и цис-1,2-трамс-4-триме-тилциклопентанов [157, 158]. Специфические особенности строения ц с-1,3-диметилциклопентана — расположение заместителей через один атом углерода — могли проявитьсядвояко, поскольку, с одной стороны, этот углеводород в определенном отношении сходен с метилцик-лопентаном (СНз-группы достаточно далеки друг от друга), а с другой стороны, у него в отличие от 1,2-ди-метилциклопентана четыре связи экранированы заместителями. [c.143]

    Циклогептан в присутствии Pt/ изомеризуется в метилциклогексан, который в свою очередь претерпевает ряд превращений с образованием толуола и бензола кроме того, катализат содержит к-гептан — продукт прямого гидрогенолиза циклогептана [199]. Кинетика и механизм последней реакции описаны в работе [159]. Оказалось, что гидрогенолиз циклогептана и метилциклогеп-тана проходит согласно нулевому порядку по углеводороду. Введение алкильного заместителя в кольцо циклогептана приводит к тем же результатам, что и в случае циклопентанов значительно снижается общий выход продуктов гидрогенолиза, кроме того, практически отсутствует гидрогенолиз по прилежащей к заместителю связи а. Относительные скорости гидрогенолиза над Pt/ различных связей в кольце метилциклогептана, метилциклопентана и этилциклопентана приведены ниже  [c.156]

    Металлы VHI группы периодической системы элементов различным образом ведут себя в качестве катализаторов гидрогенолиза циклопентанов. Платиновые катализаторы являются весьма специфическими в присутствии этого металла водород, присоединяясь к двум соседним атомам углерода, расщепляет С—С-связь кольца практически без каких бы то ни было побочных реакций. Соверщенно иначе, и в то же время по-разному, ведут себя в этой реакции Pd- и Ni-катализаторы. Б. А. Казанским с сотр. показано, что Pd/ не активен в реакциях гидрогенолиза циклопентана и его гомологов [216—218], в то время как над Ni/A Oa [142, 218, 219] происходит глубокий распад циклопентанов с преимущественным образованием метана. Исследован [138, 220] гидрогенолиз пятичленного цикла над Pt- и Ni-ка-тализаторами при гидрогенолизе н-бутилциклопентана над Ni/AbOa обнаружено большое количество нпзкомо-лекулярных углеводородов [138]. Аналогично при гидрогенолизе метилциклопентана над тем же катализатором при 240°С образовывалось до 40% газообразных алканов [142]. Подробно изучен [218] гидрогенолиз самого циклопентана над Ni-катализатором. Прн 250 около 30% циклопентана превращалось в метан, а жидкий катализат почти целиком состоял из исходного циклопентана. Таким образом, Ni-катализаторы оказались далеко не столь селективными при гидрогенолизе циклопентанового кольца, как Pt/ . Такое же жесткое действие на циклопентан и метилциклопентан оказывают и [c.160]

    Наличие в катализатах, полученных из 1,2-диметилциклопентанов на Rh/ и Os/ , относительно больших количеств изогексанов, а также метилциклопентана, говорит о том, что на этих катализаторах легко осуществляется гидрогенолиз любых С—С-связей, а не только связей пятичленного кольца, как на Pt/ . Установлено [155, 229, 231], что н-гексан и н-гептан над Ru-, Rh-, Ir-и Os-катализаторами также подвергаются гидрогенолизу. Было показано также [155, 229, 231], что на этих катализаторах проходит гидрогенолиз не только циклопентанов и алканов, но и циклогексанов. Таким образом, было установлено, что и шестичленные циклоалканы в присутствии ряда металлов VIII группы в сравнительно мягких условиях при атмосферном давлении водорода также претерпевают гидрогенолиз. [c.162]

    В связи с исследованием каталитических преврашений пяти- и шестичленных циклоалканов на металлических катализаторах несомненный интерес представляет работа японских авторов, в которой изучалась селективность размыкания колец циклогексана и метилциклопентана на Ni/AUOa [242]. Исследования проводились в диапазоне температур 230—320 °С при давлении Н2 1 МПа. При этом обнаружено, что температура начала реакции для метилциклопентана на 50 °С ниже, чем для циклогексана. В области более низких температур основными продуктами реакции являются н-гексан, 2- и 3-метилпен-таны. При преврашениях циклогексана состав Се-изоме-ров зависит от температуры мольное отношение н-гексан 2-метилпентан 3-метилпентан равно (2—6) 1 1. В случае метилциклопентана состав образующихся углеводородов практически не зависит от температуры и соотношение этих продуктов составляет 1 5 5. Счита- [c.166]

    Исследовались [247] каталитические превращения гексанов и метилциклопентана, в том числе меченных С, на сплавах Pd—Аи и Р1—Аи, нанесенных в количестве 10% на АЬОз. Обнаружено, что на Р(1/А120з, так же как и на Рс1—Аи/А Оз, основная реакция — деметилирование изомеризация н-гексана проходит по циклическому механизму. При всех температурах прокаливания активность Р(1/А120з выше, чем сплавов Рс1—Аи, а селективность практически одинакова. При переходе от чистой платины к сплавам Р1—Аи механизм и селективность реакции сушественно изменяются. Так, на Р1/А120з изомеризация н-гексана протекает по механизму сдвига [c.168]

    В работе Паала и Тетени [251] рассмотрена активность ряда металлов в реакциях гидрогенолиза метилциклопентана и 3-метилпентана и Сз-дегидроциклизации последнего. Изученные металлы разделены авторами на две группы КН, Рс1, 1г и Р1, на которых происходит однократный разрыв молекулы, и Со, N1, Си, Ки, Ад, Ке и Оз, на которых идет фрагментация исходной молекулы на несколько частей. В работе обсуждается также корреляция активности металлов первой группы с геометрией их поверхности (гранецентрированная решетка с межатомными расстояниями 0,269—0,277 нм). [c.169]

    Роль дегидроизомеризации алкилциклопентанов при образовании аренов специально исследовалась на примерах метил-, этил- и 1,2-диметилциклопентанов [49]. В присутствии Р1/А120з эти углеводороды дегидроизо-меризуются с образованием аренов, подвергаются гидрогенолизу в алканы и частично дегидрируются с образованием циклопентенов и циклопентадиенов. Из метилциклопентана и н-гексана образуются примерно одинаковые количества бензола. Из 1,2-диметилциклопентана выход толуола значительно ниже, а из этилциклопентана примерно в два раза выше, чем из н-гептана. Таким образом, очевидно, что алкилциклопентаны в изученных условиях (Pt/AbOa, 350—520 °С) являются промежуточными продуктами при ароматизации н-алканов. При этом несомненно следует учитывать то обстоятельство, что вклад циклопентанового пути ароматизации алканов в значительной степени зависит от применяемого катализатора (кислотность носителя, природа модификаторов, дисперсность и содержание активной металлической фазы) и условий проведения опыта (температура, газ-носитель, давление и т. д.). [c.195]

    Дегидроизомеризация метилциклопентана в бензол на ряде Pt-катализаторов изучена в интервале температур 250—500 °С и атмосферном давлении [50]. Показано, что Pt, нанесенная на пористое стекло или на предварительно обработанный кислотой гель кремневой кислоты, проя>вляет достаточно высокую активность в реакции ароматизации метилциклопентана. Полагают [50], что ароматизации метилциклопентана предшеству- [c.195]

    Исследовались [51] превращения метилциклопентана в присутствии Pt/AljOa в условиях, близких к условиям риформинга (470—515°С, давление Нз 0,6—4,0 МПа). Полученные результаты объясняют [51] известной схемой последовательного дегидрирования метилциклопентана в метилциклопентен, изомеризацией последнего в циклогексен с последующим превращением его в бензол и циклогексан. При этом допускается, что а) присутствие водяного пара влияет только на кислотную функцию катализатора б) старение катализатора обусловлено главным образом снижением активности Pt-центров в) лимитирующей стадией реакции является стадия изомеризации метилциклопентена в циклогексен. [c.196]

    Исследование превращений изомерных гексанов и метилциклопентана в присутствии (10% Рс1)/А120з показало [87], что основной реакцией является селективное деметилирование гексанов, а в случае метилциклопентана—гидрогенолиз пятичленного цикла. Вместе с тем, как и в присутствии Pt-катализаторов, происходит изомеризация гексанов. Анализ начального распределения продуктов реакции с использованием молекул, меченных С, показал, что структурная изомеризация гексанов проходит по циклическому механизму. В дальнейшем аналогичные превращения были исследованы [88] в присутствии Pd-, Pt-, а также нового вида катализаторов— сплавов Pd—Au и Pt—Au, осажденных па АЬОз (содержание металла везде 10%). Сплавы палладия менее активны, чем сам Pd, даже после активации воздухом при 400 °С. Основной реакцией в присутствии (Pd— Au)/АЬОз, как на Pd/АЬОз, является селективное деметилирование механизм изомеризации гексанов — циклический. Несколько неожиданный результат был получен в случае Pt-катализаторов при переходе от Pt к сплаву 15% Pt — 85% Au. В то время как на Pt/АЬОз изомеризация н-гексана проходит главным образом по механизму сдвига связей, на (Pt—Au)/АЬОз — по циклическому механизму. Аналогично гидрогенолиз метилциклопентана на указанном сплаве Pt—Au проходит неселективно, в то время как на катализаторе Pt/АЬОз — почти исключительно по неэкранированным С—С-связям цикла. Полученные результаты привели к выводу, что высокая дисперсность Pt и присутствие в непосредственной близости от атомов Pt ионов кислорода являются причинами изомеризации н-гексана по циклическому механизму и неселективного гидрогенолиза метилциклопентана [88]. [c.204]

    В соответствии со всем изложенным выше показано [109], что в строго идентичных условиях выход метилциклопентана из н-гексана действительно меньше, чем из изогексанов. Выходы метилциклопентана из 2- и 3-ме-тилпентанов практически совпадали, что, по-видимому, обусловлено практически одинаковыми суммарными благоприятными эффектами. Важной особенностью обсуждаемой работы является то, чго опыты проводили в токе Не с непременной обработкой катализатора перед каждым опытом небольшим количеством водорода. Следует отметить, что кроме метилциклопентана в продуктах реакции присутствовали изомерные гексаны, соответст-вуюшие им алкены, бензол и метилциклопентен. Для рассмотрения участия алкенов как промежуточных продуктов Сз-дегидроциклизации 2- и 3-метилпентанов были соответственно проведены две серии опытов с двойными смесями 2-метилпентан — 2-метилпентены- С и З-метилпентан- С — 3-метилпентены (рис. 41). Анализ кинетических данных (см. рис. 41) привел к заключению [109], что образование метилциклопентана из изомерных гексанов на Pt/ в атмосфере гелия (с предварительной обработкой катализатора водородом) при 310°С происходит двумя параллельными путями 1) через промежуточную стадию образования алкенов и 2) непосредственной циклизацией исходного алкана. При этом также отмечается, что в названных условиях различие в строении 2- и 3-метилпентанов мало влияет на соотн ение путей их Сз-дегидроциклизации. [c.221]

    Исследуя возможность s-циклизации ненасыщенных углеводородов (гексадиены-1,3 -1,4, -1,5, -2,4 и гексатри-ен-1,3,5) н Р1-черни нашли [107] в катализатах относительно Лоольшие количества метилциклопентена-1 и метилциклопентадиена. Наибольшую склонность к s-циклизации проявил гексадиен-1,5 ( 2—3% циклоалкенов). Однако более строгое доказательство возможности прямого перехода гексадиен— -метилциклопентен в присутствии металлсодержащих катализаторов пока отсутствует. Предложена [107] гипотетическая схема s-циклизации гексадиена-1,5, сходная со схемой образования циклопентанов путем промежуточного образования ненасыщенных интермедиатов 82]. Согласно [c.223]


Смотреть страницы где упоминается термин Метилциклопентены: [c.243]    [c.186]    [c.130]    [c.138]    [c.139]    [c.151]    [c.169]    [c.169]    [c.172]    [c.173]    [c.220]    [c.223]   
Синтез и применение непредельных циклических углеводородов (1982) -- [ c.106 , c.120 , c.121 ]




ПОИСК





Смотрите так же термины и статьи:

Метилциклопентены из циклогексана



© 2025 chem21.info Реклама на сайте